ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Physical Methods for Chemists

دانلود کتاب روشهای فیزیکی برای شیمیدانان

Physical Methods for Chemists

مشخصات کتاب

Physical Methods for Chemists

دسته بندی: شیمی فیزیکی
ویرایش: 2nd Edition 
نویسندگان:   
سری:  
ISBN (شابک) : 0030751764 
ناشر: Surfside Scientific Publishers 
سال نشر: 1992 
تعداد صفحات: 766 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 45 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Physical Methods for Chemists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روشهای فیزیکی برای شیمیدانان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب روشهای فیزیکی برای شیمیدانان

این تجدید نظر در متن/مرجع سال 1977 دراگو با عنوان روش‌های فیزیکی در شیمی همچنان به شیمیدانان بدون پیش‌زمینه ریاضی پیشرفته نحوه استفاده از روش‌های طیف‌سنجی را با خواندن در مورد چگونگی حل مسائل با آنها آموزش می‌دهد. این نسخه شامل مطالب به روز شده در مورد بازنمایی ها در نظریه گروه، اصول تبدیل فوریه در NMR و IR، طیف سنجی دو بعدی، تکنیک های سطح، و تجزیه و تحلیل در طیف سنجی جرمی است. حاشیه نویسی دارای حق چاپ توسط Book News, Inc., Portland, OR


توضیحاتی درمورد کتاب به خارجی

This revision of Drago's 1977 text/reference entitled Physical methods in chemistry continues to teach chemists without an advanced mathematical background how to use spectroscopic methods by reading about how problems have been solved with them. This edition includes updated material on representations in group theory, principles of Fourier transform in NMR and IR, two-dimensional spectroscopy, surface techniques, and analysis in mass spectroscopy. Annotation copyrighted by Book News, Inc., Portland, OR



فهرست مطالب

Title
Preface
Contents
1. Symmetry and the Point Groups
	1-1 DEFINITION OF SYMMETRY
	1-2 SYMMETRY ELEMENTS
		The Center of Symmetry, or Inversion Center
		The Identity
		The Rotation Axis
		The Mirror Plane or Plane of Symmetry
		The Rotation-Reflection Axis; Improper Rotations
	1-3 POINT GROUPS
	1-4 SPACE SYMMETRY
	1-5 SOME DEFINITIONS AND APPLICATIONS OF SYMMETRY CONSIDERATIONS
		Products or Combinations of Symmetry Operations
		Equivalent Symmetry Elements and Equivalent Atoms
		Optical Activity
		Dipole Moments
	REFERENCES CITED
	ADDITIONAL READING
	EXERCISES
2. Group Theory and the Character Tables
	2-1 INTRODUCTION
	2-2 RULES FOR ELEMENTS THAT CONSTITUTE A GROUP
	2-3 GROUP MULTIPLICATION TABLES
		Properties of the Multiplication Tables
		Similarity Transforms
		Classes of Elements
	2-4 SUMMARY OF THE PROPERTIES OF VECTORS AND MATRICES
		Vectors
		Matrices
	2-5 REPRESENTATIONS; GEOMETRIC TRANSFORMATIONS
	2-6 IRREDUCIBLE REPRESENTATIONS
	2-7 CHARACTER TABLES
	2-8 NON-DIAGONAL REPRESENTATIONS
		Degenerate Representations
	2-9 MORE ON CHARACTER TABLES
	2-10 MORE ON REPRESENTATIONS
	2-11 SIMPLIFIED PROCEDURES FOR GENERATING AND FACTORING TOTAL REPRESENTATIONS; THE DECOMPOSITION FORMULA
	2-12 DIRECT PRODUCTS
	ADDITIONAL READING
	EXERCISES
3. Molecular Orbital Theory and Its Symmetry Aspects
	Introduction
		3-1 OPERATORS
		3-2 A MATRIX FORMULATION OF MOLECULAR ORBITAL CALCULATIONS
		3-3 PERTURBATION THEORY
	Symmetry in Quantum Mechanics
		3-4 WAVE FUNCTIONS AS A BASIS FOR IRREDUCIBLE REPRESENTATIONS
		3-5 PROJECTING MOLECULAR ORBITALS
	Molecular Orbital Calculations
		3-6 HUCKEL PROCEDURE
		3-7 PROPERTIES DERIVED FROM WAVE FUNCTIONS
			1. ELECTRON DENSITY AT AN ATOM r, qr
			2. FORMAL CHARGE, δ
			3. BOND ORDER, PAB
		3-8 EXTENDED HOCKEL PROCEDURE
			1. NET ATOMIC POPULATION
			2. OVERLAP POPULATION
			3. GROSS ATOMIC POPULATION
			4. FORMAL CHARGE
		3-9 SCF-INDO (INTERMEDIATE NEGLECT OF DIFFERENTIAL OVERLAP)
		3-10 SOME PREDICTIONS FROM M.O. THEORY ON ALTERNATELY DOUBLE BONDED HYDROCARBONS
		3-11 MORE ON PRODUCT GROUND STATE WAVE FUNCTIONS
	REFERENCES CITED
	ADDITIONAL READING
	COMPILATIONS
	EXERCISES
4. General Introduction to Spectroscopy
	4-1 NATURE OF RADIATION
	4-2 ENERGIES CORRESPONDING TO VARIOUS KINDS OF RADIATION
	4-3 ATOMIC AND MOLECULAR TRANSITIONS
	4-4 SELECTION RULES
	4-5 RELAXATION AND CHEMICAL EXCHANGE INFLUENCES ON SPECTRAL LINE WIDTH
	General Applications
		4-6 DETERMINATION OF CONCENTRATION
		4-7 ISOSBESTIC POINTS
		4-8 JOB'S METHOD OF ISOMOLAR SOLUTIONS
		4-9 "FINGERPRINTING"
	REFERENCES CITED
	EXERCISES
5. Electronic Absorption Spectroscopy
	Introduction
		5-1 VIBRATIONAL AND ELECTRONIC ENERGY LEVELS IN A DIATOMIC MOLECULE
		5-2 RELATIONSHIP OF POTENTIAL ENERGY CURVES TO ELECTRONIC SPECTRA
		5-3 NOMENCLATURE
	Assignment of Transitions
		5-4 SPIN-ORBIT COUPLING
		5-5 CONFIGURATION INTERACTION
		5-6 CRITERIA TO AID IN BAND ASSIGNMENT
	The Intensity of Electronic Transitions
		5-7 OSCILLATOR STRENGTHS
		5-8 TRANSITION MOMENT INTEGRAL
		5-9 DERIVATION OF SOME SELECTION RULES
		5-10 SPECTRUM OF FORMALDEHYDE
		5-11 SPIN-ORBIT AND VIBRONIC COUPLING CONTRIBUTIONS TO INTENSITY
		5-12 MIXING OF d AND p ORBITALS IN CERTAIN SYMMETRIES
		5-13 MAGNETIC DIPOLE AND ELECTRIC QUADRUPOLE CONTRIBUTIONS TO INTENSITY
		5-14 CHARGE TRANSFER TRANSITIONS
		5-15 POLARIZED ABSORPTION SPECTRA
	Applications
		5-16 FINGERPRINTING
			SATURATED MOLECULES
			CARBONYL COMPOUNDS
			INORGANIC SYSTEMS
		5-17 MOLECULAR ADDITION COMPOUNDS OF IODINE
		5-18 EFFECT OF SOLVENT POLARITY ON CHARGETRANSFERSPECTRA
		5-19 STRUCTURES OF EXCITED STATES
	Optical Rotary Dispersion, Circular Dichroism, and Magnetocircular Dichroism
		5-20 INTRODUCTION
		5-21 SELECTION RULES
		5-22 APPLICATIONS
		5-23 MAGNETOCIRCULAR DICHROISM
	REFERENCES CITED
	ADDITIONAL REFERENCES
	EXERCISES
6. Vibrational and Rotation Spectroscopy: Infrared, Raman, and Microwave
	Introduction
		6-1 HARMONIC AND ANHARMONIC VIBRATIONS
		6-2 ABSORPTION OF RADIATION BY MOLECULARVIBRATIONS-SELECTION RULES
		6-3 FORCE CONSTANT
	Vibrations in a Polyatomic Molecule
		6-4 THE 3N- 6(5) RULE
		6-5 EFFECTS GIVING RISE TO ABSORPTION BANDS
		6-6 NORMAL COORDINATE ANALYSES AND BAND ASSIGNMENTS
		6-7 GROUP VIBRATIONS AND THE LIMITATIONS OF THIS IDEA
	Raman Spectroscopy
		6-8 INTRODUCTION
		6-9 RAMAN SELECTION RULES
		6-10 POLARIZED AND DEPOLARIZED RAMAN LINES
		6-11 RESONANCE RAMAN SPECTROSCOPY
	Symmetry Aspects of Molecular Vibrations
		6-12 SIGNIFICANCE OF THE NOMENCLATURE USED TO DESCRIBE VARIOUS VIBRATIONS
		6-13 USE OF SYMMETRY CONSIDERATIONS TO DETERMINE THE NUMBER OF ACTIVE INFRARED AND RAMAN LINES
		6-14 SYMMETRY REQUIREMENTS FOR COUPLING COMBINATION BANDS, AND FERMI RESONANCE
		6-15 MICROWAVE SPECTROSCOPY
		6-16 ROTATIONAL RAMAN SPECTRA
	Applications of Infrared and Raman Spectroscopy
		6-17 PROCEDURES
			a. In Infrared
			b. In Raman
		6-18 FINGERPRINTING
		6-19 SPECTRA OF GASES
			1. Diatomic Molecules.
			2. Linear Polyatomic Molecules.
			3. Non-linear Polyatomic Molecules.
		6-20 APPLICATION OF RAMAN AND INFRARED SELECTION RULES TO THE DETERMINATION OF INORGANIC STRUCTURES
	Bond Strength Frequency Shift Relations
		6-21 CHANGES IN THE SPECTRA OF DONOR MOLECULES UPON COORDINATION
		6-22 Change in Spectra Accompanying Change in Symmetry upon Coordination
	REFERENCES CITED
	ADDITIONAL REFERENCES
	EXERCISES
7. Nuclear Magnetic Resonance Spectroscopy - Elementary Aspects
	Introduction
	Classical Description of the NMR Experiment-The Bloch Equations
		7-1 SOME DEFINITIONS
		7-2 BEHAVIOR OF A BAR MAGNET IN A MAGNETIC FIELD
		7-3 ROTATING AXIS SYSTEMS
		7-4 MAGNETIZATION VECTORS AND RELAXATION
		7-5 THE NMR TRANSITION
		7-6 THE BLOCH EQUATIONS
		7-7 THE NMR EXPERIMENT
	The Quantum Mechanical Description ofthe NMR Experiment
		7-8 PROPERTIES OF I
		7-9 TRANSITION PROBABILITIES
	Relaxation Effects and Mechanisms
		7-10 MEASURING THE CHEMICAL SHIFT
		7-11 INTERPRETATION OF THE CHEMICAL SHIFT
			a. Local Effects
			b. Remote Effects
		7-12 INTERATOMIC RING CURRENTS
		7-13 EXAMPLES OF CHEMICAL SHIFT INTERPRETATION
	Spin-Spin Splitting
		7-14 EFFECT OF SPIN-SPIN SPLITTING ON THE SPECTRUM
		7-15 DISCOVERING NON-EQUIVALENT PROTONS
		7-16 EFFECT OF THE NUMBER AND NATURE OF THE BONDS ON SPIN-SPIN COUPLING
		7-17 SCALAR SPIN-SPIN COUPLING MECHANISMS
		7-18 APPLICATIONS OF SPIN-SPIN COUPLING TO STRUCTURE DETERMINATION
	Factors Influencing the Appearance of the NMR Spectrum
		7-19 EFFECT OF FAST CHEMICAL REACTIONS ON THE SPECTRUM
		7-20 QUANTUM MECHANICAL DESCRIPTION OF COUPLING
		7-21 EFFECTS OF THE RELATIVE MAGNITUDES OF J AND Δ ON THE SPECTRUM OF AN AB MOLECULE
		7-22 MORE COMPLICATED SECOND-ORDER SYSTEMS
		7-23 DOUBLE RESONANCE AND SPIN-TICKLING EXPERIMENTS
		7-24 DETERMINING SIGNS OF COUPLING CONSTANTS
		7-25 EFFECTS ON THE SPECTRUM OF NUCLEI WITH QUADRUPOLE MOMENTS
	REFERENCES CITED
	COMPILATIONS OF CHEMICAL SHIFTS
	EXERCISES
8. Dynamic and Fourier Transform NMR
	Introduction
	Evaluation of Thermodynamic Data with NMR
	NMR Kinetics
		8-1 RATE CONSTANTS AND ACTIVATION ENTHALPIES FROM NMR
		8-2 DETERMINATION OF REACTION ORDERS BY NMR
		8-3 SOME APPLICATIONS OF NMR KINETIC STUDIES
		8-4 INTRAMOLECULAR REARRANGEMENTS STUDIED BY NMR-FLUXIONAL BEHAVIOR
		8-5 SPIN SATURATION LABELING
		8-6 THE NUCLEAR OVERHAUSER EFFECT
	Fourier Transform NMR
		8-7 PRINCIPLES
		8-8 OPTIMIZING THE FTNMR EXPERIMENT
		8-9 THE MEASUREMENT OF T1 BY FTNMR
		8-10 USE OF T1 FOR PEAK ASSIGNMENTS
		8-11 NMR OF QUADRUPOLAR NUCLEI
	Applications and Strategies in FTNMR
		8-12 13C
		8-13 OTHER NUCLEI
	More on Relaxation Processes
		8-14 SPECTRAL DENSITY
	Multipulse Methods
		8-15 INTRODUCTION
		8-16 SPIN ECHOES
		8-17 SENSITIVITY-ENHANCEMENT METHODS
		8-18 SELECTIVE EXCITATION AND SUPPRESSION
		8-19 TWO-DIMENSIONAL NMR
	NMR in Solids and Liquid Crystals
		8-20 DIRECT DIPOLAR COUPLING
		8-21 NMR STUDIES OF SOLIDS
		8-22 NMR STUDIES IN LIQUID CRYSTAL SOLVENTS
		8-23 HIGH RESOLUTION NMR OF SOLIDS
	REFERENCES CITED
	ADDITIONAL REFERENCES
	EXERCISES
9. Electron Paramagnetic Resonance Spectroscopy
	Introduction
		9-1. Principles
	Nuclear Hyperfine Splitting
		9-2. The Hydrogen Atom
		9-3. Presentation of the Spectrum
		9-4. Hyperfine Splittings in Isotropic Systems Involving More than One Nucleus
		9-5. Contributions to the Hyperfine Coupling Constant in Isotropic Systems
	Anisotropic Effects
		9-6 ANISOTROPY IN THE g VALUE
		9-7 ANISOTROPY IN THE HYPERFINE COUPLING
		9-8 THE EPR OF TRIPLET STATES
		9-9 NUCLEAR QUADRUPOLE INTERACTION
		9-10 LINE WIDTHS IN EPR
		9-11 THE SPIN HAMILTONIAN
		9-12 MISCELLANEOUS APPLICATIONS
	REFERENCES CITED
	ADDITIONAL REFERENCES*
	EXERCISES
10. Electronic Structure and Spectra of Transition Metal Ions
	Introduction
	Free Ion Electronic States
		10-1 ELECTRON-ELECTRON INTERACTIONS AND TERM SYMBOLS
		10-2 SPIN-ORBIT COUPLING IN FREE IONS
	Crystal Fields
		10-3 EFFECTS OF LIGANDS ON THE d ORBITAL ENERGIES
		10-4 SYMMETRY ASPECTS OF THE d-ORBITAL SPLITTING BY LIGANDS
		10-5 DOUBLE GROUPS
		10-6 THE JAHN-TELLER EFFECT
		10-7 MAGNETIC COUPLING IN METAL ION CLUSTERS
	Applications
		10-8 SURVEY OF THE ELECTRONIC SPECTRA OF Oh COMPLEXES
			d1 and d9 Complexes
			d2, d7, d3, and d8 Configurations
		10-9 CALCULATION OF Dq AND β FOR Oh Ni(II) COMPLEXES
		10-10 EFFECT OF DISTORTIONS ON THE d-ORBITAL ENERGY LEVELS
		10-11 STRUCTURAL EVIDENCE FROM THE ELECTRONIC SPECTRUM
	Bonding Parameters from Spectra
		10-12 σ AND π BONDING PARAMETERS FROM THE SPECTRA OF TETRAGONAL COMPLEXES
		10-13 THE ANGULAR OVERLAP MODEL
	Miscellaneous Topics Involving Electronic Transitions
		10-14 ELECTRONIC SPECTRA OF OXO-BRIDGED DINUCLEAR IRON CENTERS
		10-15 INTERVALENCE ELECTRON TRANSFER BANDS
		10-16 PHOTOREACTIONS
	REFERENCES CITED
	EXERCISES
11. Magnetism
	11-1 INTRODUCTION
	11-2 TYPES OF MAGNETIC BEHAVIOR
		Diamagnetism
		Paramagnetism in Simple System where S = =1/2
	11-3 VAN VLECK'S EQUATION
		General Basis of the Derivation
		Derivation of the Van Vieck Equation
		Application of the Van Vleck Equation
	11-4 APPLICATIONS OF SUSCEPTIBILITY MEASUREMENTS
		Spin-Orbit Coupling
	11-5 INTRAMOLECULAR EFFECTS
	11-6 HIGH SPIN-LOW SPIN EQUILIBRIA
	11-7 MEASUREMENT OF MAGNETIC SUSCEPTIBILITIES
	11-8 SUPERPARAMAGNETISM*
	REFERENCES CITED
	EXERCISES
12. NMR of Paramagnetic Substances in Solution
	12-1 INTRODUCTION
	12-2 PROPERTIES OF PARAMAGNETIC COMPOUNDS
	12-3 CONSIDERATIONS CONCERNING ELECTRON SPIN
		The Expectation Value of Sz, 
	12-4 THE CONTACT SHIFT
	12-5 THE PSEUDOCONTACT SHIFT
	12-6 LANTHANIDES
	12-7 FACTORING THE CONTACT AND PSEUDOCONTACTSHIFTS
	12-8 THE CONTACT SHIFT AND SPIN DENSITY
	12-9 FACTORS AFFECTING NUCLEAR RELAXATION IN PARAMAGNETIC SYSTEMS
		Equations for Contact Relaxation
		Equations for Dipolar Relaxation
		Equations for Curie Relaxation
		General Comments Concerning Relaxation
	12-10 RELAXOMETRY
	12-11 ELECTRONIC RELAXATION TIMES
	12-12 CONTRAST AGENTS
	12-13 TRENDS IN THE DEVELOPMENT OF PARAMAGNETICNMR
	The Nuclear Overhauser Effect
	The Effect of Fast Nuclear Relaxation on 2-D Spectra
	12-14 SOME APPLICATIONS
		Planar-Tetrahedral Equilibria in Nickel
		Diastereoisomerism
		Diastereoisomerism and Diastereotopism in Cobalt(i)
		Group Inequivalence in NiSALMeDPT
		Ion Pairing
		Hemin-Imidazole-Cyanide
		Spin Delocalization in Iron Porphyrins
		Cobalt-substituted Carbonic Anhydrase
	12-15 THE INVESTIGATION OF BIMETALLIC SYSTEMS
		The 1H nmr of Dimeric Complexes
		Cu2Co2 Superoxide Dismutase
		Perspectives in Cluster Investigations
		Shift Reagents
	REFERENCES CITED
	EXERCISES
13. EPR Spectra of Transition Metal Ion Complexes
	13-1 INTRODUCTION
	13-2 INTERPRETATION OF THE g-VALUES
		Introduction
		S = 1/2 Systems with Orbitally Non-degenerate Ground States
		Systems in which Spin-Orbit Coupling Is Large
	13-3 HYPERFINE COUPLINGS AND ZERO FIELD SPLITTINGS
		Hyperfine and Zero-Field Effects on the Spectral Appearance
		Contributions to A
	13-4 LIGAND HYPERFINE COUPLINGS
	13-5 SURVEY OF THE EPR SPECTRA OF FIRST-ROW TRANSITION METAL ION COMPLEXES
		d1
		d2
		d3
		d4
		d5 Low Spin, S = 1/2
		d5 High Spin
		d6
		d7
		d8 High Spin
		d9
	13-6 THE EPR OF METAL CLUSTERS
	13-7 DOUBLE RESONANCE AND FOURIER TRANSFORM EPR TECHNIQUES
	REFERENCES CITED
	ADDITIONAL REFERENCES
	EXERCISES
14. Nuclear Quadrupole Resonance Spectroscopy (NQR)
	14-1 INTRODUCTION
	14-2 ENERGIES OF THE QUADRUPOLE TRANSITIONS
	14-3 EFFECT OF A MAGNETIC FIELD ON THE SPECTRA
	14-4 RELATIONSHIP BETWEEN ELECTRIC FIELDGRADIENT AND MOLECULAR STRUCTURE
	14-5 APPLICATIONS
		The interpretation of e2Qq Data
		Effects of the Crystal Lattice on the Magnitude of e2Qq
		Structural Information from NQR Spectra
	14-6 DOUBLE RESONANCE TECHNIQUES
	REFERENCES CITED
	ADDITIONAL REFERENCES
	EXERCISES
15. Mossbauer Spectroscopy
	15-1 INTRODUCTION
	15-2 INTERPRETATION OF ISOMER SHIFTS
	15-3 QUADRUPOLE INTERACTIONS
	15-4 PARAMAGNETIC MOSSBAUER SPECTRA
	15-5 MOSSBAUER EMISSION SPECTROSCOPY
	15-6 APPLICATIONS
	REFERENCES CITED
	SERIES
	EXERCISES
16. Ionization Methods: Mass Spectrometry, Ion Cyclotron Resonance, Photoelectron Spectroscopy
	Mass Spectrometry
		16-1 INSTRUMENT OPERATION AND PRESENTATION OF SPECTRA
		16-2 PROCESSES THAT CAN OCCUR WHEN A MOLECULE AND A HIGH ENERGY ELECTRON COMBINE
		16-3 FINGERPRINT APPLICATION
		16-4 INTERPRETATION OF MASS SPECTRA
		16-5 EFFECT OF ISOTOPES ON THE APPEARANCE OF AMASS SPECTRUM
		16-6 MOLECULAR WEIGHT DETERMINATIONS; FIELD IONIZATION TECHNIQUES
		16-7 EVALUATION OF HEATS OF SUBLIMATION AND SPECIES IN THE VAPOR OVER HIGH MELTING SOLIDS
		16-8 APPEARANCE POTENTIALS AND IONIZATIONPOTENTIALS
	FTICR/MS
		16-9 THE FOURIER TRANSFORM ION CYCLOTRON RESONANCE TECHNIQUE
	Surface Science Techniques
		16-10 INTRODUCTION
		16-11 PHOTOELECTRON SPECTROSCOPY
			XPS
			UPS
		16-12 SIMS (SECONDARY ION MASS SPECTROMETRY)
		16-13 LEED, AES, AND HREELS SPECTROSCOPY
			LEED
			AES (AUGER ELECTRON SPECTROSCOPY)
			HREELS
		16-14 STM (SCANNING TUNNELING MICROSCOPY) ANDAFM (ATOMIC FORCE MICROSCOPY)
	EXAFS and XANES
		16-15 INTRODUCTION
		16-16 APPLICATIONS
	REFERENCES CITED
	EXERCISES
17. X-Ray Crystallography
	17-1 INTRODUCTION
	Principles
		17-2 DIFFRACTION OF X-RAYS
		17-3 REFLECTION AND RECIPROCAL SPACE
		17-4 THE DIFFRACTION PATTERN
		17-5 X-RAY SCATTERING BY ATOMS AND STRUCTURES
		17-6 CRYSTAL GROWTH
		17-7 SELECTION OF CRYSTALS
		17-8 MOUNTING CRYSTALS
	Methodology
		17-9 DIFFRACTION EQUIPMENT
		17-10 DIFFRACTOMETER DATA COLLECTION
		17-11 COMPUTERS
	Some Future Developments
		17-12 AREA DETECTORS
		17-13 X-RAY VERSUS NEUTRON DIFFRACTION
		17-14 SYNCHROTRON RADIATION
	Symmetry and Related Concerns
		17-15 CRYSTAL CLASSES
		17-16 SPACE GROUPS
		17-17 SPACE-GROUP DETERMINATION
		17-18 AVOIDING CRYSTALLOGRAPHIC MISTAKES
		17-19 MOLECULAR VERSUS CRYSTALLOGRAPHIC SYMMETRY
		17-20 QUALITY ASSESSMENT
		17-21 CRYSTALLOGRAPHIC DATA
	REFERENCES CITED
	EXERCISES
Appendices
	Appendix A. Character Tables for Chemically Important Symmetry Groups
	Appendix B. Character Tables for Double Groups
	Appendix C. Normal Vibration Modes
	Appendix D. Tanabe and Sugano Diagrams for Oh Fields
	Appendix E. Calculation of Δ and β for Oh Ni(II) and Td Co(II) Complexes
	Appendix F. Conversion of Chemical Shift Data
	Appendix G. Solution of the Secular Determinant for the NMR Coupling of the AB Spin System
Index
SELECTED CONSTANTS
CONVERSION FACTORS
PROPERTIES OF SELECTED NUCLEI
Blank Page




نظرات کاربران