ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Photocatalysis Using 2D Nanomaterials

دانلود کتاب فوتوکاتالیز با استفاده از نانومواد دو بعدی

Photocatalysis Using 2D Nanomaterials

مشخصات کتاب

Photocatalysis Using 2D Nanomaterials

ویرایش: [11] 
نویسندگان: ,   
سری: Inorganic Materials 
ISBN (شابک) : 9781839161605 
ناشر:  
سال نشر: 2022 
تعداد صفحات: 315
[316] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Photocatalysis Using 2D Nanomaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فوتوکاتالیز با استفاده از نانومواد دو بعدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فوتوکاتالیز با استفاده از نانومواد دو بعدی

این کتاب بررسی های بسیار مورد نیاز را در مورد نواحی سریع در حال توسعه مواد کاتالیزوری عکس (الکترو) مرتبط با دوبعدی ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

This book provides much-needed reviews of fast-developing areas of 2D-related photo(electro)catalytic materials.



فهرست مطالب

Cover
Half Title
Inorganic Materials Series No. 11
Photocatalysis Using 2D Nanomaterials
Copyright
Series Preface
Preface
Contents
1. Recent Developments and Perspectives on Solar-drivenFine Chemicals Synthesis: From the Reaction System to 2D Photocatalysts
	1.1 Introduction
	1.2 Selective Oxidation Reactions
		1.2.1 Selective Oxidation of Alcohols
		1.2.2 Selective Oxidation of Sulfides
		1.2.3 Selective Oxidation of Benzenes
		1.2.4 Other Selective Oxidation Reactions
	1.3 Selective Reduction Reactions
		1.3.1 Reduction of Nitrobenzene into Aniline
		1.3.2 Reduction of Unsaturated Hydrocarbons
	1.4 C–C/C–N Coupling Reactions
		1.4.1 Aerobic Couplings of Amines to Form Imines
		1.4.2 Synthesis of 2,5-Diaryl 1,3,4- OxadiazolesThrough Coupling a-Keto Acids with Acylhydrazines
		1.4.3 Aza-Henry Reaction of N-aryl-tetrahydroisoquinoline with Nitromethane
		1.4.4 C–C Coupling of Alcohols or Aldehydes
	1.5 Other Fine Chemicals Synthesis Reactions
		1.5.1 Cis–Trans Isomerisation of Unsaturated Fatty Acids
		1.5.2 Dehydrogenation Reactions
	1.6 2D Materials for Biomass Photo(Electro)Catalytic Conversion
		1.6.1 Background of Biomass Conversion
		1.6.2 Photocatalytic Conversion of Biomass and Its Derivatives in General
		1.6.3 Lignin Derivatives
		1.6.4 Furans
		1.6.5 Other Biomass-derived Alcohols
	1.7 Summary and Outlook
	References
2. Opportunities for Ultrathin 2D Catalysts in Promoting CO2 Photoreduction
	2.1 Introduction
	2.2 Boosted Light Harvesting by Ultrathin 2D Catalysts for Promoting CO2 Photoreduction
		2.2.1 Extending the Photochemical Activity ofUltrathin 2D Materials to the Visible Light Region
		2.2.2 Visible-light-driven CO2 Reduction withUltrathin 2D Catalysts Enabled by Defect Engineering
		2.2.3 Visible-light-driven CO2 Reduction withUltrathin 2D Catalysts Enabled by Surface Modification and Loading Strategies
		2.2.4 Visible-light-driven CO2 Photoreduction withUltrathin 2D Catalysts Enabled by Constructing 2D Heterojunctions
	2.3 Extending the Photochemical Activity ofUltrathin 2D Materials to the Infrared Light Region
		2.3.1 IR-light-driven CO2 Reduction with Ultrathin2D Catalysts Enabled by Surface Loading Strategies
		2.3.2 IR-light-driven CO2 Reduction with Ultrathin2D Catalysts Enabled by Constructing an Intermediate Band
		2.3.3 IR-light-driven CO2 Reduction with UltrathinMetallic 2D Catalysts with a Partially Occupied Band
	2.4 Optimised Photogenerated Carrier Dynamics in Ultrathin 2D Catalysts for Promoting CO2 Reduction
		2.4.1 Strategies for Suppressing Carrier Recombination During CO2 Photoreduction
		2.4.2 Strategies for Accelerating Carrier Separation During CO2 Photoreduction
	2.5 Optimised Surface Reaction Dynamics of Ultrathin 2D Catalysts for Promoting CO2 Reduction
		2.5.1 Strategies for Enhancing CO2 Adsorption and Activation Processes
	2.6 Reduced Energy Barrier by Optimising the Reaction Dynamics to Improve Photocatalytic Activity
	2.7 Accelerated Product Desorption to Prevent Catalyst Poisoning to Improve Photocatalytic Activity
	2.8 Optimised Intermediate Dynamics to Alter the Reaction Pathway to Improve Product Selectivity
	2.9 Unveiling Reaction Mechanisms with Ultrathin 2DCatalysts to Design Efficient CO2 Photoreduction Systems
		2.9.1 In-situ Characterisation to Unveil the True Active Sites of Ultrathin 2D Catalysts
		2.9.2 In-situ Characterisation of CatalyticIntermediates to Uncover the Reaction Pathway
		2.9.3 Theoretical Calculations of the DynamicEvolution of Catalytic Reactions to Disclosing the Reaction Mechanism
	2.10 Conclusions and Perspectives
	Acknowledgements
	References
3. Photocatalysis by Graphenes
	3.1 Introduction
	3.2 General Preparation Methods for Graphene-based Materials
	3.3 Reduced Graphene Oxide and Graphene as Co- catalysts
	3.4 Graphene and Related Materials as Photocatalysts
	3.5 Photocatalytic Activity of Related Graphene Materials
	3.6 Summary and Future Prospects
	References
4. 2D Inorganic Nanosheet-based Hybrid Photocatalysts for Water Splitting
	4.1 Introduction
	4.2 Synthetic Methods for 2D Inorganic Nanosheets and their Nanohybrids
	4.3 2D Inorganic Nanosheet-based Hybrid Photocatalysts
		4.3.1 2D TMO Nanosheet-based Photocatalysts
		4.3.2 2D TMD Nanosheet-based Photocatalysts
		4.3.3 2D LDH Nanosheet-based Photocatalysts
		4.3.4 2D TMC Nanosheet-based Photocatalysts
		4.3.5 2D Metal Oxyhalide Nanosheet-based Photocatalysts
		4.3.6 2D g-C3N4 Nanosheet-based Photocatalysts
		4.3.7 2D h-BN Nanosheet-based Photocatalysts
		4.3.8 2D Elemental Nanosheet-based Photocatalysts
	4.4 Role of 2D Inorganic Nanosheets in Hybrid-type Photocatalysts
		4.4.1 Photocatalytically Active Component
		4.4.2 Photosensitisers
		4.4.3 Co-catalysts
		4.4.4 Charge Reservoir
		4.4.5 Charge Transport Pathway
	4.5 Characterisation Techniques for Inorganic 2D Nanosheets and Their Nanohybrids
	4.6 Overall Conclusion and Outlook
	References
5. 2D Photocatalytic Materials for Environmental Applications
	5.1 Introduction
	5.2 Key Chemistry and Engineering Issues LimitingPhotocatalysis in Real-world Applications in Environmental Remediation
		5.2.1 Interference from Co-existing Compounds
		5.2.2 Formation of Undesirable Byproducts and Uncertain Reaction Pathways
		5.2.3 Uncertainty in Radicals
		5.2.4 Reactor Design and Light Penetration Especially for Large- scale Applications
	5.3 Typical 2D Material Systems for Photocatalysis in Environmental Remediation
		5.3.1 Metal- free 2D Materials
		5.3.2 Metal Oxides
		5.3.3 Transition Metal Chalcogenides (TMCs)
	5.4 Strategies to Enhance the PhotocatalyticPerformance of 2D Materials Towards Environmental Remediation
		5.4.1 Hybridisation
		5.4.2 Doping and Defects
		5.4.3 Grain Boundary Engineering
		5.4.4 Assembly
	5.5 Photocatalytic Environmental Applications
		5.5.1 Water Detoxification Treatment
		5.5.2 Air Purification
		5.5.3 Water Disinfection
		5.5.4 Heavy Metal Detoxification
	5.6 Conclusions and Future Perspectives
	References
Subject Index




نظرات کاربران