دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Christian Schaum
سری: 1
ISBN (شابک) : 9781780408354
ناشر: IWA Publishing
سال نشر: 0
تعداد صفحات: 591
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Phosphorus Polluter and Resource of the Future به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آلاینده فسفر و منبع آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover......Page 1
Copyright......Page 5
Contents......Page 6
About the Editor......Page 22
Preface – Phosphorus: Curse and Blessing?......Page 24
Part I: Phosphorus – A Special Element......Page 28
1.1 Introduction......Page 30
1.2 Perceptions of Phosphorus as a Pollutant......Page 32
1.3.1 The phosphorus transfer continuum......Page 36
1.4 Reactive P from Urban Environments......Page 41
1.4.1 Urban wastewater discharges......Page 42
1.5 Are All Sources of Phosphorus Equally Polluting?......Page 43
1.5.1 Ecological relevance of phosphorus forms......Page 44
1.6.1 Point source controls......Page 46
1.6.2 Diffuse source controls......Page 47
1.7 Strategies Towards More Sustainable Phosphorus Use......Page 48
1.8 Conclusions......Page 49
1.9 References......Page 50
2.1 Introduction......Page 62
2.2 The European Union......Page 65
2.3 The United States......Page 71
2.4 Australia......Page 72
2.5 Japan......Page 74
2.6 South and East Asia......Page 76
2.7 Africa......Page 78
2.9 Conclusions......Page 79
2.10 References......Page 80
3.1 Introduction......Page 84
3.2.1 Phosphorus flows in Europe......Page 85
3.2.2 Global phosphorus flows......Page 90
3.3.1 Definition of resources and reserves......Page 97
3.4.1 Economic scarcity......Page 101
3.4.2 Environmental pollution......Page 102
3.4.4 Regional differences in phosphorus balances......Page 103
3.6 References......Page 104
Part II: Elimination of Phosphorus from Wastewater......Page 108
4.1 Origin of Phosphorus in Wastewater......Page 110
4.2.1 Domestic wastewater......Page 115
4.2.2 Wastewater from industrial and commercial sources......Page 119
4.3.1 Speciation of phosphorus......Page 120
4.3.2 Determination of phosphorus in water and wastewater......Page 124
4.3.3 Sequential extraction procedures to determine the binding form of phosphorus......Page 131
4.4 References......Page 132
5.1 Biological Phosphorus Removal......Page 136
5.1.1 Process configurations for EBPR......Page 137
5.1.2 Factors affecting performance......Page 140
5.2 Chemical Phosphorus Removal......Page 145
5.2.1 Process principles......Page 146
5.2.2 Mechanisms of chemical phosphorus removal......Page 147
5.2.3 Applications of chemical phosphorus removal......Page 155
5.3 References......Page 156
6.1 Necessity of Advanced Phosphorus and Particle Removal......Page 160
6.2 Phosphorus and Particles......Page 161
6.3 Processes of Advanced P-Elimination......Page 163
6.4.2 Sedimentation, lamella separator, flotation in combination with post-precipitation......Page 164
6.4.3 Filtration processes......Page 166
6.4.4 Shallow bed filtration......Page 168
6.4.5 Deep bed filtration......Page 171
6.4.6 Membrane filtration......Page 173
6.5 Assessment of the Different Particle Separation Processes......Page 174
6.6 References......Page 175
7.1 Introduction......Page 178
7.2 Determination of Dewaterability of Sewage Sludges......Page 179
7.3 Impact of was and Biological P-Removal on Sludge Dewatering......Page 185
7.4 Alternative for Mitigating the Impact of EBPR on Dewatering......Page 191
7.4.2 Stored phosphorus release......Page 192
7.4.3 Thermal and chemical thermal cell lysis......Page 195
7.4.4 Struvite precipitation......Page 196
7.6 References......Page 198
8.1 Introduction......Page 202
8.2.1 Kinetic values of conventional biological phosphorus removal......Page 204
8.2.2 Optimization of classical biological phosphorus removal......Page 206
8.2.3 Membrane processes......Page 208
8.2.4 Alternative microorganisms and metabolic processes for phosphorus fixation......Page 209
8.3.1 Microbial fuel cell......Page 210
8.3.2 Algae and macrophyte cultures (aquatic plants)......Page 211
8.3.3 Use of enzymes/proteins......Page 212
8.3.4 Bioleaching......Page 213
8.3.5 P-mobilization by bacterial colonization......Page 214
8.3.6 Plant systems for heavy metal depletion......Page 215
8.4 Emerging Process Designs and Their Impact on Phosphorus Removal and Recovery......Page 216
8.4.1 Characterization of phosphorus compounds occurring in wastewater treatment......Page 217
8.4.2 Exemplary treatment concepts and their effect on phosphorus removal and recovery......Page 219
8.4.3 Comparison and evaluation of phosphorus removal concepts in WWTPs of the future......Page 225
8.5 References......Page 227
9.2 Background on Phosphorus Removal......Page 232
9.3 Factors Affecting Costs of Phosphorus Removal......Page 233
9.4 Economic Assessment of Different Systems......Page 234
9.5.1 Introduction......Page 235
9.5.2 Capital costs (simultaneous precipitation)......Page 237
9.5.3 Capital costs (enhanced biological phosphorus removal)......Page 239
9.5.4 Capital costs (filtration)......Page 240
9.5.5 Capital costs (summary)......Page 241
9.5.6 Operational costs......Page 242
9.5.7 Lifecycle costs......Page 243
9.7 References......Page 244
10.1 Introduction......Page 246
10.1.1 Phosphorus transformations in wastewater treatment......Page 247
10.2.1 Biological transformations in mainline......Page 250
10.2.2 Anaerobic transformations in sidestream......Page 252
10.2.3 Chemical transformations......Page 253
10.3.1 Modeling interactions with iron and sulfur cycles......Page 257
10.3.2 Implementation and solution in a plant-wide context......Page 259
10.4.2 Enhancing phosphorus recovery......Page 260
10.6 References......Page 261
Part IIIa: Phosphorus Recovery: Technology......Page 266
11.1 Introduction......Page 268
11.2 Elemental Composition of Sewage Sludge......Page 270
11.3 German Survey of Sewage Sludge Ashes......Page 271
11.4 References......Page 277
12.1.1 A new product in an existing market......Page 280
12.1.2 From supply driven to demand driven......Page 281
12.2.2 Suppliers......Page 282
12.2.3 Users......Page 283
12.2.5 Policymakers......Page 285
12.3.1 General requirements demand......Page 286
12.3.2 Summary requirements......Page 289
12.4.2 Top products......Page 290
12.4.5 Closed a contract: now what?......Page 294
12.5 References......Page 295
13.2 Key Drivers and Barriers......Page 296
13.3 Technology Review......Page 297
13.3.1 Fluidized bed reactor......Page 298
13.3.3 AirPrex™......Page 301
13.4 Market Analysis......Page 302
13.7 References......Page 305
14.1 Phosphorus Demand in the Asia Region......Page 308
14.1.1 The phosphorus flow in China......Page 310
14.1.2 The phosphorus flow in Korea......Page 312
14.1.4 The phosphorus flow in Thailand......Page 313
14.1.5 The phosphorus flow in Vietnam......Page 315
14.1.6 The phosphorus flow in Japan......Page 316
14.2 Challenges for Phosphorus Recovery from the Japanese Sewerage System......Page 317
14.2.1 Phosphorus recovery technologies......Page 318
14.2.2 Phosphorus recovery from sewage sludge......Page 322
14.2.3 Phosphorus recovery from incineration ash......Page 323
14.2.4 Phosphorus recovery from a melting process......Page 324
14.3 Concluding Remarks......Page 326
14.4 References......Page 327
15.1 Introduction......Page 332
15.2.1 ExtraPhos® – chemical phosphate recovery from sewage sludge by CO2 acidulation and precipitation......Page 336
15.2.2 Chemical phosphate recovery by functionalized superparamagnetic particles......Page 338
15.2.3 Sequential electrodialytic phosphorus recovery from sewage sludge ash......Page 339
15.2.4 Thermal white phosphorus extraction from sewage sludge ash......Page 342
15.3.1 Nutrient recycling (N + P) by enhanced (microbial) biomass production and nitrogen conservation......Page 347
15.3.2 Nutrient (N + P) recycling by microalgae and mixed microbial cultures to fish and fish products......Page 348
15.3.3 Nutrient recycling from wastewater by lithoautotrophic (aerobic hydrogen oxidizing) bacteria......Page 351
15.5 References......Page 356
Part IIIb: Phosphorus Recovery: Technology......Page 360
16.1 Introduction......Page 362
16.2.1 Process scheme......Page 363
16.2.2 Chemistry......Page 364
16.3 Results of the Large-Scale Implementation......Page 365
16.3.2 Costs......Page 366
16.3.4 Fact sheet......Page 367
16.4 References......Page 368
17.1 Thematic Introduction......Page 370
17.2 Procedural Definition......Page 371
17.3 Anaerobic Redissolution of Phosphorus......Page 372
17.4.2 Influence on sludge dewatering......Page 373
17.5 The AirPrex® Process......Page 374
17.6 Struvite Precipitation Based on the Example of the Rwzi in Amsterdam-West [5]......Page 375
17.8 References......Page 377
18.1 Introduction......Page 378
18.2.1 Description......Page 379
18.2.2 Key figures of the process......Page 383
18.4 References......Page 384
19.1 Introduction......Page 386
19.2.1 The Pearl process description......Page 387
19.2.3 Crystal Green......Page 388
19.2.4 Key figures of the process......Page 389
19.3 Outlook – Further Developments......Page 392
20.1 Introduction......Page 394
20.2.1 Apparatus......Page 395
20.3.1 Capacity......Page 396
20.3.3 Cost......Page 397
20.3.4 Product quality......Page 398
20.4 Application for Another Purpose......Page 399
20.5 References......Page 400
21.1 Introduction......Page 402
21.2 The Process......Page 403
21.3 Nutrient Recovery Pilot Plant......Page 404
21.3.1 Operation of the plant (batch mode)......Page 405
21.3.2 Performance data......Page 409
21.3.3 Recyclate quality......Page 411
21.3.4 Cost analysis......Page 415
21.6 References......Page 417
22.1 Introduction......Page 418
22.2.1 Description......Page 419
22.3 Outlook – Further Developments......Page 420
22.4 References......Page 421
23.1 Introduction......Page 422
23.2.1 Description......Page 423
23.2.2 Key figures of the process......Page 426
23.3 Outlook – Further Developments......Page 427
24.1 Introduction......Page 428
24.2.1 Raw phosphates for industrial business......Page 429
24.2.2 Solubility of phosphates in ashes......Page 430
24.3 Remondis Tetraphos® Process......Page 431
24.4 The Pilot Plant: Putting Theory into Practice......Page 433
24.4.1 Results: Phosphorus recovery & heavy metals......Page 434
24.6 References......Page 436
25.1 Introduction......Page 438
25.2 Process Description......Page 439
25.2.2 Precipitation process......Page 440
25.4 Conclusion......Page 441
25.5 References......Page 443
26.1 Introduction......Page 444
26.2.1 Description......Page 445
26.2.2 Key figures of the process......Page 447
26.4 References......Page 451
27.1 Introduction......Page 452
27.2.1 Challenges and responses......Page 453
27.2.2 Towards the current AshDec® process......Page 455
27.3.3 Waste......Page 456
27.4 The Product......Page 457
27.5 Outlook – Development Options......Page 458
27.6 References......Page 460
28.1 Introduction......Page 462
28.2.1 Principle of phosphorus recovery......Page 463
28.2.2 Reactor......Page 464
28.3.1 Pilot plant test......Page 465
28.5 Conclusion......Page 468
29.1 Introduction......Page 470
29.2.1 Description......Page 471
29.2.2 Key figures of the process......Page 472
29.4 References......Page 473
30.1 Introduction......Page 474
30.2 Process Description......Page 476
30.3 Performance Data......Page 477
30.5 Conclusions......Page 479
30.6 References......Page 480
Part IIIc: Phosphorus Recovery: Assessment......Page 482
31.1 Introduction......Page 484
31.2.1 Urine separation......Page 485
31.2.2 Recovery from secondary treated effluent......Page 486
31.2.3 Recovery from liquid phase of sludge treatment......Page 487
31.2.4 Recovery from sewage sludge......Page 488
31.2.5 Recovery from sewage sludge ashes......Page 490
31.3.1 Modular reference system and assessed technologies......Page 493
31.3.3 Economic assessment......Page 494
31.3.4 Environmental assessment......Page 495
31.4.1 Recovery potential and assessment of the recovered materials......Page 496
31.4.2 Economic assessment......Page 501
31.4.3 Environmental assessment......Page 503
31.4.4 Uncertainty......Page 507
31.5 Conclusions......Page 508
31.6 References......Page 510
32.1.1 The value chain......Page 514
32.1.2 Success factors......Page 516
32.2.2 Struvite recovery......Page 523
32.2.3 Sludge processes......Page 526
32.2.4 Ash based processes......Page 528
32.3 Conclusions......Page 535
32.4 Additional Considerations......Page 537
32.5 Outlook......Page 538
32.6 References......Page 539
33.1 Introduction......Page 542
33.2 Defining the Matter at Hand......Page 543
33.3 The Innovation Field for Phosphorus Recovery......Page 544
33.3.1 Imperative of phosphorus recovery......Page 545
33.3.2 General framework conditions for the modernization of WWTPs......Page 546
33.3.3 Criteria for comparing approaches towards modernization of WWTPs......Page 548
33.4 Sociological Methods for Technological Innovations in the Wastewater Sector......Page 550
33.5 Summary and Perspective......Page 557
33.6 References......Page 559
Part IV: Outlook......Page 562
34.1 Introduction......Page 564
34.2.1 Health protection......Page 565
34.2.2 Water protection......Page 567
34.2.3 Resource protection......Page 568
34.3.2 Nutrients......Page 569
34.3.3 Energy......Page 571
34.4 Wastewater Treatment Plants of the Future: From Treatment Plant to (System) Service Provider......Page 574
34.5 Conclusion and Outlook: From Treatment Facility to System Service Provider......Page 576
34.6 References......Page 577
Index......Page 582