دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: معادلات دیفرانسیل ویرایش: Reprint نویسندگان: Stanley J. Farlow سری: Dover Books on Mathematics ISBN (شابک) : 048667620X, 9780486676203 ناشر: Dover Publications سال نشر: 1993 تعداد صفحات: 428 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Partial Differential Equations for Scientists and Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معادلات دیفرانسیل جزئی برای دانشمندان و مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
PART 1 - Introduction LESSON 1 - Introduction to Partial Differential Equations PART 2 - Diffusion-Type Problems LESSON 2 - Diffusion-Type Problems (Parabolic Equations) LESSON 3 - Boundary Conditions for Diffusion-Type Problems LESSON 4 - Derivation of the Heat Equation LESSON 5 - Separation of Variables LESSON 6 - Transforming Nonhomogeneous BCs into Homogeneous Ones LESSON 7 - Solving More Complicated Problems by Separation of Variables LESSON 8 - Transforming Hard Equations into Easier Ones LESSON 9 - Solving Nonhomogeneous PDEs (Eigenfunction Expansions) LESSON 10 - Integral Transforms (Sine and Cosine Transforms) LESSON 11 - The Fourier Series and Transform LESSON 12 - The Fourier Transform and Its Application to PDEs LESSON 13 - The Laplace Transform LESSON 14 - Duhamel’s Principle LESSON 15 - The Convection Term ux in the Diffusion Problems PART 3 - Hyperbolic-Type Problems LESSON 16 - The One-Dimensional Wave Equation (Hyperbolic Equations) LESSON 17 - The D’Alembert Solution of the Wave Equation LESSON 18 - More on the D’Alembert Solution LESSON 19 - Boundary Conditions Associated with the Wave Equation LESSON 20 - The Finite Vibrating String (Standing Waves) LESSON 21 - The Vibrating Beam (Fourth-Order PDE) LESSON 22 - Dimensionless Problems LESSON 23 - Classification of PDEs (Canonical Form of the Hyperbolic Equation) LESSON 24 - The Wave Equation in Two and Three Dimensions (Free Space) LESSON 25 - The Finite Fourier Transforms (Sine and Cosine Transforms) LESSON 26 - Superposition (The Backbone of Linear Systems) LESSON 27 - First-Order Equations (Method of Characteristics) LESSON 28 - Nonlinear First-Order Equations (Conservation Equations) LESSON 29 - Systems of PDEs LESSON 30 - The Vibrating Drumhead (Wave Equation in Polar Coordinates) PART 4 - Elliptic-Type Problems LESSON 31 - The Laplacian (an Intuitive Description) LESSON 32 - General Nature of Boundary-Value Problems LESSON 33 - Interior Dirichlet Problem for a Circle LESSON 34 - The Dirichlet Problem in an Annulus LESSON 35 - Laplace’s Equation in Spherical Coordinates (Spherical Harmonics) LESSON 36 - A Nonhomogeneous Dirichlet Problem (Green’s Function) PART 5 - Numerical and Approximate Methods LESSON 37 - Numerical Solutions (Elliptic Problems) LESSON 38 - An Explicit Finite-Difference Method LESSON 39 - An Implicit Finite-Difference Method (Crank-Nicolson Method) LESSON 40 - Analytic versus Numerical Solutions LESSON 41 - Classification of PDEs (Parabolic and Elliptic Equations) LESSON 42 - Monte Carlo Methods (an Introduction) LESSON 43 - Monte Carlo Solution of Partial Differential Equations LESSON 44 - Calculus of Variations (Euler-Lagrange Equations) LESSON 45 - Variational Methods for Solving PDEs (Method of Ritz) LESSON 46 - Perturbation Methods for Solving PDEs LESSON 47 - Conformal-Mapping Solutions of PDEs ANSWERS TO SELECTED PROBLEMS APPENDIX 1 - Integral Transform Tables APPENDIX 2 - PDE Crossword Puzzle APPENDIX 3 - Laplacian in Different Coordinate Systems APPENDIX 4 - Types of Partial Differential Equations Index