دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: میکروب شناسی ویرایش: 1 نویسندگان: Ruth Shinar. Joseph Shinar سری: ISBN (شابک) : 0071596755, 9780071596756 ناشر: سال نشر: 2009 تعداد صفحات: 459 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب الکترونیک آلی در سنسورها و بیوتکنولوژی (سری بیوفوتونیک مک گرا-هیل): رشته های زیستی، میکروبیولوژی و بیوتکنولوژی
در صورت تبدیل فایل کتاب Organic Electronics in Sensors and Biotechnology (Mc-Graw-Hill Biophotonics Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الکترونیک آلی در سنسورها و بیوتکنولوژی (سری بیوفوتونیک مک گرا-هیل) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جدیدترین در سنجش و بیوتکنولوژی مبتنی بر الکترونیک آلی با استفاده از اطلاعات جامع موجود در این جلد قطعی، آرایههای حسگر بیولوژیکی، شیمیایی و فیزیکی مبتنی بر نیمه هادیهای آلی با کارایی بالا و قابل استقرار در میدان ایجاد کنید. Organic Electronics در حسگرها و بیوتکنولوژی، فناوری پیشرفته را در کنار کاربردهای واقعی و تحقیق و توسعه در حال انجام ارائه می دهد. درباره مانیتورهای نور، دما و فشار، حسگرهای پیروالکتریک انعطاف پذیر یکپارچه، سنجش ترکیبات آلی و معدنی و طراحی بیاموزید. سنسورهای فوتولومینسنت فشرده همچنین جزئیات کاملی در مورد لیزرهای آلی، الکترونیک آلی در عناصر حافظه، تشخیص بیماری و پاتوژن و پلیمرهای مزدوج برای پیشبرد بیولوژی سلولی دریافت خواهید کرد. نظارت بر ترکیبات آلی و معدنی با OFET مشخص کردن مواد آلی با استفاده از طیفسنجی امپدانس کار با الایدیهای آلی، آشکارسازهای نوری و سلولهای فتوولتائیک تشکیل حسگرهای پیرالکتریک انعطافپذیر یکپارچه با OFET. ساخت ماژولها و آرایههای حسگر شیمیایی و بیولوژیکی مبتنی بر PL. پلیمرهای مزدوج به عنوان حسگرهای زیستی نوری سوئیچ های مبتنی بر پلیمر و پمپ های یونی را در سطح میکروسیال مستقر کنید.
The latest in organic electronics-based sensing and biotechnology Develop high-performance, field-deployable organic semiconductor-based biological, chemical, and physical sensor arrays using the comprehensive information contained in this definitive volume. Organic Electronics in Sensors and Biotechnology presents state-of-the-art technology alongside real-world applications and ongoing R & D. Learn about light, temperature, and pressure monitors, integrated flexible pyroelectric sensors, sensing of organic and inorganic compounds, and design of compact photoluminescent sensors. You will also get full details on organic lasers, organic electronics in memory elements, disease and pathogen detection, and conjugated polymers for advancing cellular biology. Monitor organic and inorganic compounds with OFETs Characterize organic materials using impedance spectroscopy Work with organic LEDs, photodetectors, and photovoltaic cells Form flexible pyroelectric sensors integrated with OFETs Build PL-based chemical and biological sensing modules and arrays Design organic semiconductor lasers and memory elements Use luminescent conjugated polymers as optical biosensors Deploy polymer-based switches and ion pumps at the microfluidic level
Contents......Page 8
Contributors......Page 14
Preface......Page 18
1.1.1 Charge Transport in Polycrystalline Organic Semiconductors (Intragrain and Intergrain)......Page 24
1.1.2 Characterization of Nanoscale Organic Transistors......Page 28
1.1.3 Channel Length and Temperature Dependence of Charge Transport in Organic Transistors......Page 30
1.1.4 Field-Dependent Mobility Model for the Scaling Behavior of Charge Transport......Page 37
1.1.5 Charge Transport in sub-10-nm Organic Transistors......Page 44
1.2.1 General Introduction to Organic Transistors for Sensing Applications......Page 48
1.2.2 Vapor Sensing in Micron-Sized Organic Transistors and Trapping at Grain Boundaries......Page 50
1.2.3 Transition of Sensing Response by Organic Transistors from Micron-Scale to Nanoscale......Page 52
1.2.4 Discussions on the Scaling Behavior of Sensing Response: Role of Grain Boundaries and Contact......Page 58
1.2.5 Sensor Response to Different Analytes and the Function of Receptors......Page 63
1.3 The Unified Picture of Scaling Behavior of Charge Transport and Chemical Sensor......Page 66
References......Page 68
2.1 Inorganic Substance Monitoring for Early Diagnosis......Page 74
2.2 OTFT-Based Sensors: A Bird's-Eye View......Page 78
2.3 Anthracene-Based Organic Thin-Film Transistors as Inorganic Analyte Sensors......Page 82
2.3.1 Introduction......Page 83
2.3.2 New Materials for OTFT Sensing Applications......Page 85
2.3.3 Device Performance......Page 90
2.3.4 Gas Sensing Measurements......Page 94
2.4.1 Introduction......Page 98
2.4.2 New Materials......Page 100
2.4.3 Key Features of the Nanostructured Active Layers......Page 101
2.4.4 Gas Sensing Results and Perspectives of the Study......Page 106
References......Page 108
3.1 Introduction......Page 116
3.2 Working Principles of Organic Field-Effect Transistor Sensors......Page 117
3.3.1 State of the Art in Strain and Pressure Sensors Based on Organic Materials......Page 119
3.3.2 Substrate-Free Organic Thin-Film Strain and Pressure Sensors......Page 125
3.4.1 Artificial Sense of Touch......Page 130
3.4.2 E-Textiles......Page 133
References......Page 138
4.1.1 Impedance Spectroscopy (Basics, Impedance Elements, Ideal and Nonideal MIS Structures)......Page 140
4.1.2 The IS of an Organic MIS Structure......Page 143
4.1.3 Charge-Time Behavior of Capacitive Multilayers......Page 146
4.2.1 Introduction......Page 151
4.2.2 Theoretical Background— Pyroelectricity......Page 152
4.2.3 Pyroelectric Polymer Materials......Page 154
4.2.4 Description of the Sensor Part......Page 158
4.2.5 Description of Transistor Part......Page 176
References......Page 186
5.1 Introduction......Page 188
5.2 Structurally Integrated OLED/Sensing Component Modules......Page 191
5.3 Sensors Based on Oxygen Monitoring......Page 192
5.3.1 Advances in Monitoring Gas-Phase and Dissolved Oxygen......Page 193
5.3.2 Multianalyte Sensing......Page 200
5.3.3 Sensors for Foodborne Pathogens......Page 204
5.4 OLED Sensing Platform Benefits and Issues......Page 205
5.5 OLED/Sensing Component/Photodetector Integration......Page 207
5.6 Concluding Remarks......Page 210
References......Page 211
6.1 Introduction......Page 216
6.2 Conventional Photodetectors......Page 218
6.3.1 Device Architectures......Page 225
6.3.2 Device Fabrication......Page 227
6.3.3 Current-Voltage Characteristics......Page 231
6.3.4 The Equivalent Circuit......Page 238
6.4.1 Spectral Response......Page 240
6.4.2 Rise Time and Cutoff Frequency......Page 241
6.4.3 Intrinsic Photodiode Noise Characteristics......Page 244
6.5 Measuring a Current......Page 248
6.5.1 The Transimpedance Amplifier......Page 249
6.5.2 The Charge Integrator......Page 255
6.6.1 Capacitance......Page 257
6.6.2 Shunt Resistance......Page 260
6.6.3 Spectral Response......Page 262
6.6.4 Gain......Page 264
6.7.1 Printed and Flexible Devices......Page 267
6.7.2 X-Ray Imaging......Page 270
6.7.3 Diagnostics......Page 276
Determining the Thermal Noise of a Resistor......Page 281
References......Page 283
7.1 Introduction......Page 288
7.2.1 Distributed Feedback Resonators......Page 289
7.2.3 Optical Pumping......Page 292
7.3 Fabrication......Page 293
7.3.1 Master Fabrication: Electron Beam Lithography......Page 295
7.3.2 Master Fabrication: Direct Laser Writing......Page 296
7.3.3 Master Fabrication: Laser Interference Lithography......Page 297
7.3.4 Master Fabrication: Laser Interference Ablation......Page 298
7.3.5 Replication: Imprint Techniques......Page 299
7.3.7 Active Layer Deposition......Page 300
7.4.1 Sensing Schemes......Page 303
7.4.2 Integration of Organic Lasers in Optical Sensor Systems......Page 309
References......Page 316
8 Organic Electronics in Memories and Sensing Applications......Page 322
8.1.1 Organic Semiconductors......Page 323
8.1.2 DNA......Page 329
8.1.3 Electroactive Polymers......Page 332
8.2.1 Memory Elements......Page 334
8.2.3 Light Sensors......Page 343
8.4 Summary......Page 346
Acknowledgments......Page 347
References......Page 348
9.1 Introduction......Page 352
9.2.1 Definition and Examples......Page 353
9.2.2 Optical Properties......Page 354
9.2.3 Conjugated Polymers as Optical Sensors......Page 357
9.3.1 Formation of Amyloid Fibrils......Page 362
9.3.2 Protein Aggregation Diseases......Page 364
9.3.3 Methods for Detection and Structural Characterization of Amyloid Fibrils......Page 366
9.4.1 Detection of Amyloid Fibrils in Solution......Page 367
9.4.2 Histological Staining of Amyloid Deposits in Tissue Samples......Page 371
9.4.3 Toward in Vivo Staining of Amyloid Deposits......Page 376
References......Page 377
10.1 Introduction......Page 384
10.2.1 Definition......Page 386
10.2.2 Principle of EPD......Page 387
10.2.3 Theory of EPD......Page 390
10.2.4 Parameters Influencing EPD......Page 391
10.2.5 Materials for EPD......Page 397
10.3.1 Photon Crystal Technology......Page 405
10.3.2 Light-Emitting Diodes......Page 406
10.3.3 Organic Photocells......Page 407
10.3.4 Biosensors......Page 408
10.4 Scope of Electrophoretically Deposited Polymers......Page 410
References......Page 412
11.1 Electronic Control of Surface Properties......Page 418
11.1.2 Surface Switches Based on P3AT, PPy, and PANI......Page 419
11.1.4 Electronic Control of Cell Seeding and Proliferation Using Surface Switches......Page 422
11.2 Electronic Ion Pumps Based on PEDOT:PSS......Page 424
11.2.1 Electronic Control of Proton Oscillations......Page 425
11.2.2 Electronic Ion Pumps to Regulate Intracellular Ca[sup(2+)] Signaling......Page 426
Acknowledgments......Page 427
References......Page 428
Index......Page 430
B......Page 432
D......Page 433
F......Page 434
I......Page 435
M......Page 436
O......Page 437
P......Page 439
S......Page 440
T......Page 441
Z......Page 442