ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Optical Thin Film Design

دانلود کتاب طراحی لایه نازک نوری

Optical Thin Film Design

مشخصات کتاب

Optical Thin Film Design

دسته بندی: فن آوری
ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 1138390445, 9781138390447 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: 257 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Optical Thin Film Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی لایه نازک نوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Author
Chapter 1 Fundamental Concepts
	1.1 Optical Thin Films
		1.1.1 Antireflection
		1.1.2 High Reflection
		1.1.3 Optical Filters
		1.1.4 Optical Filters with Metal Films
	1.2 Electromagnetic Wave Equation
	1.3 Plane Waves
	1.4 Power Flux
	1.5 Electromagnetic Waves Across Dielectric Boundaries
		1.5.1 Derivation of the Boundary Conditions
		1.5.2 Normal Incidence
		1.5.3 Oblique Incidence
			1.5.3.1 TE Incidence
			1.5.3.2 TM Incidence
	1.6 Problems
	Further Reading
Chapter 2 Optical Thin Film Materials
	2.1 Properties of Optical Thin Film Materials
	2.2 Dielectric Thin Film Materials
		2.2.1 Oxides
			2.2.1.1 SiO2
			2.2.1.2 TiO2
			2.2.1.3 Al2O3
			2.2.1.4 Ta2O5
			2.2.1.5 SiO
			2.2.1.6 Nb2O5
			2.2.1.7 Other Oxide Films
		2.2.2 Fluorides
			2.2.2.1 MgF2
			2.2.2.2 CaF2
		2.2.3 Nitrides
			2.2.3.1 Si3N4
			2.2.3.2 TiN
		2.2.4 Sulfides
			2.2.4.1 ZnS
	2.3 Semiconductors
		2.3.1 Si
		2.3.2 Ge
		2.3.3 CdS
	2.4 Metals
		2.4.1 Ag
		2.4.2 Al
		2.4.3 Au
		2.4.4 Cu
		2.4.5 Cr
	2.5 Problems
	References
Chapter 3 Single-Layer Antireflection Theory
	3.1 Reflection from a Single Dielectric Interface
	3.2 Single-Film Antireflection
	3.3 Complex Effective Reflectance Index Contours
	3.4 Limitations of the Effective Reflectance Index
	3.5 Quality Factor
	3.6 Normalized Frequency
	3.7 Problems
Chapter 4 Transfer Matrix Method
	4.1 Transfer Matrix Method for Normal Incidence
	4.2 Including the Effects of Reflection from the Backside of the Substrate
	4.3 Example – Antireflection on Silica Glass
	4.4 Film Stacks on Both Sides of the Substrate
	4.5 Materials with Complex and Dispersive Refractive Indices
	4.6 Calculation of Absorption in Films
	4.7 Calculation of the Field Distribution
		4.7.1 Example – Field Distribution in the Single-Layer Antireflection Structure
	4.8 Oblique Incidence – TE (Transverse Electric)
	4.9 Oblique Incidence – TM (Transverse Magnetic)
	4.10 Problems
	References
Chapter 5 Multilayer Antireflection Theory
	5.1 Two-Layer Quarter-Wave Antireflection Designs
	5.2 Two-Layer Non-Quarter-Wave Antireflection Designs
	5.3 Three-Layer Antireflection Design
	5.4 Principles of the Three-Layer Design Using the Absentee Layer
	5.5 Double-V Designs
	5.6 Antireflection on a Substrate That Already Contains Thin Films
	5.7 Structured and Gradient-Index Films
	5.8 Problems
	References
Chapter 6 High-Reflection Designs
	6.1 Effective Reflectance Index of a Periodic Layer
	6.2 Symmetric Unit Cell
	6.3 High-Reflection Designs with Symmetric Unit Cells
	6.4 Broadband Reflectors
Chapter 7 Herpin Equivalence Principle
	7.1 Basic Principles
	7.2 Preview Example
	7.3 Trilayer Unit Cell
	7.4 Trilayer Unit Cell with d2 = 2d1
	7.5 (H/2 L H/2) VS (L/2 H L/2)
	7.6 Effective Reflectance Index Contour
	7.7 Reflection and Transmission at the Reference Wavelength
		7.7.1 Stop Band
	7.8 Reflection at the Edges of the Stop Band
		7.8.1 Higher-Order Absentee Conditions
	7.9 Example – Continued from Section 7.2
	7.10 Problems
	Further Reading
Chapter 8 Edge Filters
	8.1 Basic Concepts
	8.2 Equivalent Index of the Passband of a Periodic Stack
	8.3 Transition Characteristics
	8.4 Numerical Optimization
	8.5 Effects of Material Dispersion
	8.6 Design Example of a Mid-Infrared Long-Pass Edge Filter
	8.7 Problems
	References
Chapter 9 Line-Pass Filters
	9.1 Single-Cavity Design
		9.1.1 Resonant-Cavity Enhancement
	9.2 VCSELs
	9.3 Coupled-Cavity Design
	9.4 Problems
	References
Chapter 10 Bandpass Filters
	10.1 Bandpass Filters by Combining Two Edge Filters
	10.2 Coupled-Cavity Bandpass Filters
	10.3 Problems
	Further Reading
Chapter 11 Thin-Film Designs for Oblique Incidence
	11.1 Angle of Incidence on the Spectral Performance of a Filter
	11.2 Continuity Equations and Angle of Incidence (TE)
	11.3 Reflection from a Single Interface for TE Polarization
	11.4 Behavior of n[sup(z)] with Incident Angle
	11.5 Single-Layer Antireflection for TE Incidence
	11.6 Continuity Equations and Angle of Incidence (TM)
	11.7 Reflection from a Single Interface for TM Polarization
	11.8 Behavior of n[sup(z1)] with Incident Angle
	11.9 Single-Layer Antireflection for TM Incidence
	11.10 Effective Reflectance Index Contours
	11.11 Oblique Incidence on a Filter Designed for Normal Incidence
	11.12 Multilayer Filters Designed for Oblique Incidence
	11.13 A Common Misconception
	11.14 Thin-Film Polarizing Beam Splitter
	11.15 Problems
	References
Chapter 12 Metal Film Optics
	12.1 Optical Properties of Metals
	12.2 Transparency of Metals
	12.3 Antireflection Designs for Metal Substrates
		12.3.1 Using Films with Complex Refractive Indices
		12.3.2 Using Films with Real Refractive Indices
		12.3.3 Antireflection Using Metal–Insulator–Metal Structures
	12.4 Antireflection on Semiconductors
	12.5 Bandpass Filters Using Metal Films
		12.5.1 Single-Cavity Metal–Dielectric–Metal Bandpass Filter
			12.5.1.1 Optical Dispersion of Metals
			12.5.1.2 Metal–Dielectric–Metal Cavity Structure Layer Thicknesses
		12.5.2 Coupled-Cavity Metal–Dielectric Bandpass Design
	12.6 Problems
	Further Reading
Chapter 13 Thin-Film Designs Using Phase Change Materials
	13.1 Introduction
	13.2 Vanadium Dioxide (VO[sub(2)])
		13.2.1 Optical Properties of Vanadium Dioxide
		13.2.2 Antireflection
		13.2.3 Resonant-Cavity Structures with a Complex Film at the Center
		13.2.4 Resonant-Cavity Structures with VO[sub(2)] at the Center
	13.3 Ge[sub(2)]Sb[sub(2)]Te[sub(5)] (GST)
		13.3.1 Optical Properties of GST
		13.3.2 Antireflection
		13.3.3 Resonant-Cavity Structures with GST
		13.3.4 Multilayer Designs Using GST
	Further Reading
Chapter 14 Deposition Methods
	14.1 Introduction
		14.1.1 Optical Thin-Film Design vs Process Design
		14.1.2 Major Categories of Deposition Techniques
	14.2 PVD
		14.2.1 Sputter Deposition
			14.2.1.1 DC Sputter Deposition
			14.2.1.2 RF Sputter Deposition
			14.2.1.3 Reactive Sputter Deposition
			14.2.1.4 Ion Beam Sputtering
		14.2.2 PLD
			14.2.2.1 Sputter Configurations
		14.2.3 Thermal Evaporation
			14.2.3.1 Resistively Heated Thermal Evaporation
			14.2.3.2 Flash Evaporation
			14.2.3.3 Electron-Beam-Heated Thermal Evaporation
			14.2.3.4 Reactive Evaporation
			14.2.3.5 Ion-Assisted Deposition
	14.3 Chemical Vapor Deposition
		14.3.1 LPCVD
		14.3.2 PECVD
		14.3.3 ALD
	14.4 Thickness Monitoring and Control
		14.4.1 Quartz Crystal Microbalance
		14.4.2 Optical Monitoring
	14.5 Thin-Film Stress
	Further Reading
Chapter 15 Python Computer Code
	15.1 Plane Wave Transfer Matrix Method
		15.1.1 Subroutine: tmm.py
		15.1.2 TMM Reflection Spectrum with and without Substrate Backside (Figure 4.4 in Chapter 4)
		15.1.3 TMM Reflection Spectrum Including Complex and Dispersive Materials (Figure 4.5 in Chapter 4)
		15.1.4 Subroutine: tmm_field.py
		15.1.5 Field Profile inside Single-Layer Antireflection (Figure 4.6 in Chapter 4)
		15.1.6 Coupled-Cavity Line Filter (Figure 9.14 in Chapter 9)
	15.2 Effective Reflectance Index Contours
		15.2.1 Subroutine: contour.py
		15.2.2 Single Quarter-Wave Contour (Figure 3.3 in Chapter 3)
		15.2.3 Two Quarter-Wave Contours (Figure 5.1 in Chapter 5)
		15.2.4 Subroutine: two_contour_equations.py
		15.2.5 Intersection between Two Contours (Figure 5.4a in Chapter 5)
		15.2.6 Subroutine: vvequations.py
		15.2.7 Roots of the Double-V Design (Figure 5.19a)
		15.2.8 Subroutine: complex_ns_equations.py
		15.2.9 Solving for the Antireflection Condition with an Existing Film (Figure 5.21)
		15.2.10 Solving for the Metal and Dielectric Thicknesses in a Metal–Insulator–Metal (MIM) Structure (Figure 12.18)
Index




نظرات کاربران