دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: نورشناسی ویرایش: نویسندگان: Joseph Shamir سری: SPIE Press Monograph Vol. PM65 ISBN (شابک) : 0819432261, 9780819432261 ناشر: SPIE Publications سال نشر: 1999 تعداد صفحات: 433 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب سیستم ها و فرایندهای نوری: فیزیک، اپتیک
در صورت تبدیل فایل کتاب Optical Systems and Processes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم ها و فرایندهای نوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مطالب
- پیشگفتار
- مقدمه
- بررسی انتشار امواج الکترومغناطیسی
- نظریه سیستم های خطی
- تبدیلات جبهه موج< br> - سیستمهای نوری پایه
- سیستمهای نوری غیر ایدهآل
- جنبههای آماری نور - تداخل و تداخلسنجها
- قطبش
- مدولاسیون نور فضایی
- هولوگرافی
- جبر اپراتور پیشرفته
- پردازش اطلاعات نوری
- الف: خلاصه روابط اپراتورها
- ب: کتابشناسی
- ج: مسائل و راه حلها
- د: فهرست
Contents
- Preface
- Introduction
- Review of electromagnetic wave propagation
- Linear systems theory
- Wavefront transformations
- Basic optical systems
- Non-ideal optical systems
- Statistical aspects of light
- Interference and interferometers
- Polarization
- Spatial light modulation
- Holography
- Advanced operator algebra
- Optical information processing
- A: Summary of operator relations
- B: Bibliography
- C: Problems and solutions
- D: Index
Content: 2 Review of electromagnetic wave propagation --
2.1 Wave fronts 8 --
2.2 Phase velocity and the speed of ligh 10 --
2.3 Power and intensity 12 --
2.4 Reflection and transmission at a boundary 14 --
2.5 Stratified layers 17 --
3 Linear systems theory --
3.1 Linear systems 19 --
3.2 Fourier transformation 20 --
3.3 Singular functions 21 --
3.4 Fourier transform theorems 23 --
3.5 Frequently used functions and their Fourier transforms 26 --
3.6 Linear system response 28 --
4 Wavefront transformations --
4.1 Free-space propagation 32 --
4.1.1 The paraxial approximation 34 --
4.1.2 The free-space propagation operator 36 --
4.2 Operator relations 37 --
4.4 Refraction in dielectric materials 40 --
4.5 Thin optical elements 43 --
4.5.1 The transparency 43 --
4.5.2 The thin dielectric slab 44 --
4.5.3 The thin prism 46 --
4.5.4 The thin lens 48 --
4.5.5 Gratings 51 --
4.5.6 Mirrors as optical elements 53 --
4.6 One-dimensional operator definitions 54 --
4.7 Cylindrical lens operators 56 --
4.7.1 Transformations with the C operator 58 --
4.8 The Gaussian beam and its transformations 58 --
4.8.1 Free-space propagation of Gaussian beams 59 --
4.8.2 Lens transformations of Gaussian beams 61 --
4.9 Operator algebra --
discussion 63 --
5 Basic optical systems --
5.1 Imaging with a thin lens 68 --
5.2 Fourier transformation with a thin lens 70 --
5.3 Some aspects of geometrical optics 73 --
5.4 Applications of single lens systems 76 --
5.4.1 The single lens image projector 76 --
5.4.2 The magnifying glass 78 --
5.4.3 Applications of a single Fourier transforming system 79 --
5.5 Two lenses in free space 80 --
5.5.1 Bonnet spheres and field flattening 80 --
5.5.2 Microscope and some of its characteristics 83 --
5.5.3 The double Fourier transforming system 85 --
5.5.4 The telescope 85 --
5.5.5 An invariance property of the two-lens system 87 --
5.6 Spatial filtering and optical correlation 89 --
5.6.1 The joint transform correlator JTC 92 --
5.6.2 The matched filter 95 --
5.6.3 Bandwidth consideration 98 --
5.7 Space-variant and space-invariant systems 100 --
6 Non-ideal optical systems --
6.1 Optical systems of finite extent 106 --
6.1.1 Apertured imaging system 108 --
6.1.2 Apertured Fourier transforming system 114 --
6.1.3 Depth of focus 117 --
6.2 Real optical elements 118 --
6.2.1 Aberrations 119 --
6.2.2 Real lenses 122 --
7 Statistical aspects of light --
7.1 Interference 127 --
7.2 Mutual coherence 129 --
7.3 Self coherence 130 --
7.4 Temporal coherence 131 --
7.5 The Michelson interferometer 132 --
7.6 Spatial coherence and spatial correlation 135 --
7.7 Propagation of the coherence function 137 --
7.8 Spatial coherence from incoherent sources 138 --
7.9 Speckle patterns 141 --
7.9.1 Correlation function model of speckle patterns 143 --
7.9.2 Rigid translation 145 --
7.9.3 Free space observation 145 --
8 Interference and interferometers --
8.1 Interference fringes 156 --
8.2 Dynamic interference fringes 157 --
8.2.1 Interference of two plane waves 159 --
8.2.2 Interference between a plane wave and a spherical wave 161 --
8.3 Interferometry 161 --
8.4 Interferometers and energy conservation 162 --
8.5 The Michelson interferometer 163 --
8.5.1 Interferometric displacement measurement 163 --
8.5.2 Interferometric velocity measurement 165 --
8.5.3 Interferometric profile and phase analysis 166 --
8.6 Other double-beam interferometers 168 --
8.6.1 The Mach Zender interferometer 168 --
8.6.2 Ring interferometer 171 --
8.6.3 The Jamin interferometer 174 --
8.6.4 Beam splitters 174 --
8.6.5 The Kosters prism interferometer 176 --
8.7 Using corner cubes 176 --
8.8 Advanced interferometric procedures 178 --
8.8.1 Amplitude modulation interferometry 178 --
8.8.2 Phase shifting interferometry 180 --
8.8.3 Heterodyne interferometry 180 --
8.8.4 Multiwavelength interferometry 181 --
8.8.5 Coherence interferometer 183 --
8.9 The laser Doppler velocimeter 183 --
8.10 Multibeam interferometers 188 --
8.10.1 Elementary diffraction gratings 188 --
8.10.2 Generalized diffraction gratings 190 --
8.10.3 The grating spectroscope 192 --
8.10.4 The Fabry Perot interferometer 194 --
8.11 Self-referencing interferometers 197 --
8.11.1 Phase visualization by spatial filtering 198 --
9 Polarization --
9.1 Polarization of plane waves 201 --
9.2 Superposition of polarized waves 203 --
9.2.1 Superposition of two plane polarized waves 204 --
9.2.2 Superposition of two circularly polarized waves 205 --
9.3 Propagation in an isotropic media 206 --
9.3.1 Maxwell\'s equations in anisotropic media 207 --
9.3.2 The index ellipsoid 208 --
9.3.3 Birefringence 209 --
9.4 Basic polarization components 211 --
9.4.1 The polarizer 211 --
9.4.2 The retardation plate 214 --
9.4.3 Optical isolator 215 --
9.5 Electro-optic modulation 216 --
9.6 The Jones matrix representation 219 --
9.7 Circular birefringence 222 --
9.8 Polarization aberrations 224 --
10 Spatial light modulation --
10.1 Intensity response of a recording material 227 --
10.2 Spatial frequency response of recording materials 229 --
10.3 Diffractive optical elements 231 --
10.4 Electronic recording 232 --
10.5 Acousto-optic modulation 235 --
10.6 Two-dimensional spatial light modulators 240 --
10.6.1 Controllable birefringence 241 --
10.6.2 Deformable mirrors 242 --
10.6.3 Semiconductor modulators 242 --
11 Holography --
11.1 The holographic process 245 --
11.2 Hologram recording with plane reference wave 249 --
11.3 Spherical wave recording magnification 250 --
11.4 Wavelength changes in holography 253 --
11.5 Phase conjugation 255 --
11.6 Classification of holograms: conditions and properties 257 --
11.6.1 On-axis and off-axis holography 257 --
11.6.2 Transmission and reflection holograms 258 --
11.6.3 Object wave configurations 261 --
11.7 Hologram recording conditions 262 --
11.7.1 Coherence and stability conditions 263 --
11.7.2 Recording medium consideration 264 --
11.8 Phase holograms 264 --
11.8.1 Thermoplastic films 265 --
11.8.2 Surface relief recording 266 --
11.8.3 Photopolymers 267 --
11.8.4 Photorefractive materials 267 --
11.9 Synthetic holograms 268 --
11.10 Electronic recording 269 --
11.11 Holographic interferometry 269 --
11.11.1 Time average holographic interferometry 269 --
11.11.2 Real-time holographic interferometry 272 --
11.11.3 Double exposure holographic interferometry 275 --
11.11.4 Phase conjugate interferometry 276 --
11.12 Generalized treatment of the holographic process 278 --
12 Advanced operator algebra --
12.1 Ray transfer matrix of optical systems 287 --
12.2 The canonical operator 289 --
12.3 Integral representation of canonical operators 291 --
12.4 Wave optics and geometrical ray matrices 293 --
12.5 Canonical operator relations 296 --
12.6 Real lenses 297 --
12.7 Gaussian beam transformations 298 --
12.8 Roots and powers of optical systems 300 --
12.8.1 Matrix calculus 300 --
12.8.2 Roots and powers of specific optical systems 303 --
13 Optical information processing --
13.1 Electro-optic pattern recognition 311 --
13.2 DOE design as an optimization problem 314 --
13.2.1 Optimization algorithms an overview 316 --
13.2.2 Cost function in filter design 322 --
13.3 Transformations with cylindrical lenses 326 --
13.3.1 The variable focal length astigmatic system 326 --
13.3.2 Imaging and Fourier transformation with astigmatic systems 327 --
13.4 One-dimensional signal processing 329 --
13.4.1 The vector matrix multiplier 329 --
13.4.2 Optical interconnection network 330 --
13.4.3 Scale and coordinate transformation 331 --
13.4.4 The ambiguity function 332 --
13.4.5 Wavelet transform 333 --
13.4.6 Space-variant convolution 335 --
13.4.7 Convolution of 1D functions using the C operator 338 --
13.5 Matrix matrix multiplication 340 --
A Summary of operator relations --
A.1 Definition of basic operators 345 --
A.2 Commutation rules among the basic operators 346 --
A.2.1 Operations of the quadratic phase factor 346 --
A.2.2 Operations by the linear phase factor 347 --
A.2.3 Operations of the scaling operator 347 --
A.2.4 Operations of the shift operator 348 --
A.2.5 Operations by the FT operator 348 --
A.2.6 Operations by the FPO 348 --
A.2.7 Other useful relations 349 --
A.3 Normalized operator relations 349.