دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: هندسه و توپولوژی ویرایش: web draft نویسندگان: Martin Markl, Steve Shnider, James D. Stasheff سری: ISBN (شابک) : 9780821821343, 0821821342 ناشر: American Mathematical Society سال نشر: 2002 تعداد صفحات: 300 زبان: English فرمت فایل : GZ (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 766 کیلوبایت
در صورت تبدیل فایل کتاب Operads in algebra, topology and physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عملی در جبر ، توپولوژی و فیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اپرادها ابزارهای ریاضی هستند که ساختارهای جبری را در انواع مختلف و در دسته های مختلف توصیف می کنند. اپراها به ویژه در مقولههایی که مفهوم خوبی از «همونوتوپی» دارند، که نقش کلیدی در سازماندهی سلسله مراتب هموتوپیهای بالاتر دارند، اهمیت دارند. نمونه های مهم برای اولین بار در دهه شصت ظاهر شدند، اگرچه تعریف رسمی و عمومیت مناسب در انتظار دهه هفتاد بود. این اتفاقات اولیه در توپولوژی جبری در مطالعه فضاهای حلقه (تکرار شده) و جبرهای زنجیره ای آنها بود. در دههی نود، نظریهای با الهام از کشف روابط جدید با همشناسی گراف، نظریه نمایش، هندسه جبری، مقولههای مشتقشده، نظریه مورس، هندسه سمپلتیک و تماسی، ترکیبیات، نظریه گره، فضاهای مدول، رنسانس و توسعه بیشتر تئوری ایجاد شد. همشناسی چرخهای، و نه کماهمیت، فیزیک نظری، بهویژه نظریه میدان ریسمان و کوانتیزاسیون تغییر شکل. تعمیم دوگانگی درجه دوم (به عنوان مثال، جبرهای دروغ به عنوان جبرهای دوگانه به جبرهای جابجایی) همراه با ویژگی Koszulness در یک زمینه اساساً اپرادی یک ابزار محاسباتی اضافی برای مطالعه خواص هموتوپی خارج از تنظیمات توپولوژیکی ارائه می کند. این کتاب شامل یک مقدمه تاریخی مفصل و جامع است که توسعه نظریه اپراد را از دوره اولیه که ابزاری نسبتاً تخصصی در نظریه هموتوپی بود تا امروز که اپرادها طیف گسترده ای از کاربردها در جبر، توپولوژی و فیزیک ریاضی دارند، توصیف می کند. بسیاری از نتایج و کاربردهایی که در حال حاضر در ادبیات پراکنده شده اند همراه با نتایج و بینش های جدید در اینجا گردآوری شده اند. تعاریف و ساختارهای اساسی به دقت توضیح داده شده است و شامل جزئیات زیادی است که در هیچ یک از ادبیات استاندارد یافت نمی شود. فصلی در مورد توپولوژی وجود دارد که نتایج کلاسیک را با تاکید بر ساختار $W$ و عدم تغییر هموتوپی بررسی میکند. فصل دیگری همسانی جبرهای اپرادی، مدل های حداقلی و جبرهای هموتوپی را شرح می دهد. فصلی در هندسه بر فضاهای پیکربندی و فشرده سازی آنها تمرکز دارد. فصل پایانی به عملیاتهای حلقوی و مدولار و کاربردهایی برای رسم مجتمعها و فضاهای مدول سطوح از جنس دلخواه میپردازد.
Operads are mathematical devices which describe algebraic structures of many varieties and in various categories. Operads are particularly important in categories with a good notion of "homotopy" where they play a key role in organizing hierarchies of higher homotopies. Significant examples first appeared in the sixties though the formal definition and appropriate generality waited for the seventies. These early occurrences were in algebraic topology in the study of (iterated) loop spaces and their chain algebras. In the nineties, there was a renaissance and further development of the theory inspired by the discovery of new relationships with graph cohomology, representation theory, algebraic geometry, derived categories, Morse theory, symplectic and contact geometry, combinatorics, knot theory, moduli spaces, cyclic cohomology, and, not least, theoretical physics, especially string field theory and deformation quantization. The generalization of quadratic duality (e.g., Lie algebras as dual to commutative algebras) together with the property of Koszulness in an essentially operadic context provided an additional computational tool for studying homotopy properties outside of the topological setting. The book contains a detailed and comprehensive historical introduction describing the development of operad theory from the initial period when it was a rather specialized tool in homotopy theory to the present when operads have a wide range of applications in algebra, topology, and mathematical physics. Many results and applications currently scattered in the literature are brought together here along with new results and insights. The basic definitions and constructions are carefully explained and include many details not found in any of the standard literature. There is a chapter on topology, reviewing classical results with the emphasis on the $W$-construction and homotopy invariance. Another chapter describes the (co)homology of operad algebras, minimal models, and homotopy algebras. A chapter on geometry focuses on the configuration spaces and their compactifications. A final chapter deals with cyclic and modular operads and applications to graph complexes and moduli spaces of surfaces of arbitrary genus.
Cover......Page 1
Title Page......Page 6
Copyright Page......Page 7
Contents\0......Page 8
Preface\0......Page 10
Part I\0......Page 12
1.1. Lazard\'s formal group laws\0......Page 14
1.2. PROPs and PACTs\0......Page 15
1.3. Non-E operads and operads\0......Page 16
1.4. Theories\0......Page 18
1.5. Tree operads\0......Page 19
1.6. A,,-spaces and loop spaces\0......Page 20
1.7. E,-spaces and iterated loop spaces\0......Page 23
1.8. A,-algebras\0......Page 24
1.9. Partiality and A.-categories\0......Page 25
1.10. L.-algebras\0......Page 28
1.12. n-ary algebras\0......Page 30
1.13. Operadic bar construction and Koszul duality\0......Page 31
1.14. Cyclic operads\0......Page 32
1.15. Moduli spaces and modular operads\0......Page 33
1.16. Operadic interpretation of closed string field theory\0......Page 34
1.17. From topological operads to dg operads\0......Page 37
1.18. Homotopy invariance in algebra and topology\0......Page 38
1.19. Formality, quantization and Deligne\'s conjecture\0......Page 40
1.20. Insertion operads\0......Page 42
Part II\0......Page 46
1.1. Symmetric monoidal categories\0......Page 48
1.2. Operads\0......Page 51
1.3. Pseudo-operads\0......Page 56
1.4. Operad algebras\0......Page 57
1.5. The pseudo-operad of labeled rooted trees\0......Page 61
1.6. The Stasheff associahedra\0......Page 67
1.7. Operads defined in terms of arbitrary finite sets\0......Page 71
1.8. Operads as monoids\0......Page 78
1.9. Free operads and free pseudo-operads\0......Page 82
1.10. Collections, K-collections and K-operads\0......Page 95
1.11. The GK-construction\0......Page 97
1.12. Triples\0......Page 99
2.1. Iterated loop spaces\0......Page 104
2.2. Recognition\0......Page 105
2.3. The bar construction: theme and variations\0......Page 107
2.4. Approximation\0......Page 108
2.5. F-spaces\0......Page 112
2.6. Homology operations\0......Page 113
2.7. The linear isometries operad and infinite loop spaces\0......Page 117
2.8. W-construction\0......Page 120
2.9. Algebraic structures up to strong homotopy\0......Page 123
3.1. The cobar complex of an operad\0......Page 132
3.2. Quadratic operads\0......Page 148
3.3. Koszul operads\0......Page 156
3.4. A complex relating the two conditions for a Koszul operad\0......Page 160
3.5. Trees with levels\0......Page 165
3.6. The spectral sequences relating N(P) and C(P)\0......Page 169
3.7. Coalgebras and coderivations\0......Page 176
3.8. The homology and cohomology of operad algebras\0......Page 184
3.9. The pre-Lie structure on Coder(F..(X))\0......Page 193
3.10. Application: minimal models and homotopy algebras\0......Page 197
4.1. Configuration spaces operads and modules\0......Page 214
4.2. Deligne-Knudsen-Mumford compactification of moduli spaces\0......Page 223
4.3. Compactification of configuration spaces of points in R\"\0......Page 229
4.4. Compactification of configurations of points in a manifold\0......Page 245
5.1. Cyclic operads\0......Page 258
5.2. Application: cyclic (co)homology\0......Page 269
5.3. Modular operads\0......Page 278
5.4. The Feynman transform\0......Page 290
5.5. Application: graph complexes\0......Page 301
5.6. Application: moduli spaces of surfaces of arbitrary genera\0......Page 315
5.7. Application: closed string field theory\0......Page 323
Epilog\0......Page 338
Bibliography\0......Page 340
Glossary of notations\0......Page 350
Index\0......Page 356