دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برنامه نويسي ویرایش: نویسندگان: Dr. Menua Gevorgyan, Arsen Mamikonyan, Michael Beyeler سری: ISBN (شابک) : 9781789801811 ناشر: Packt Publishing سال نشر: 2020 تعداد صفحات: 0 زبان: English فرمت فایل : MOBI (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 59 مگابایت
در صورت تبدیل فایل کتاب OpenCV 4 with Python Blueprints: Build creative computer vision projects with the latest version of OpenCV 4 and Python 3, 2nd Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب OpenCV 4 با Python Blueprints: ساخت پروژه های خلاقانه بینایی کامپیوتری با آخرین نسخه OpenCV 4 و Python 3، نسخه دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با الگوریتمهای بینایی رایانهای سنتی و رویکردهای یادگیری عمیق آشنا شوید و با OpenCV و سایر چارچوبهای یادگیری ماشینی برنامههای کاربردی در دنیای واقعی بسازید. انسانها یادگیری خود را در زمینههای مختلف بینایی کامپیوتر پیادهسازی کنید. مفاهیم پیشرفته در OpenCV مانند یادگیری ماشین، شبکه عصبی مصنوعی و واقعیت افزوده را کاوش کنید. به طور فزاینده ای در پایتون برای توسعه پذیرفته می شود. این کتاب شما را با طیف گسترده ای از پروژه های متوسط تا پیشرفته با استفاده از آخرین نسخه چارچوب و زبان، OpenCV 4 و Python 3.8، به جای پوشش دادن مفاهیم اصلی OpenCV در دروس تئوری، آشنا می کند. این نسخه دوم به روز شده شما را از طریق کار بر روی پروژه های عملی مستقل راهنمایی می کند که بر مفاهیم ضروری OpenCV مانند پردازش تصویر، تشخیص اشیا، دستکاری تصویر، ردیابی اشیا و بازسازی صحنه سه بعدی، علاوه بر یادگیری آماری و شبکه های عصبی تمرکز دارند. شما با مفاهیمی مانند فیلترهای تصویر، حسگر عمق کینکت و تطبیق ویژگی ها شروع خواهید کرد. با پیشروی، نه تنها با بازسازی و تجسم یک صحنه به صورت سه بعدی عمل می کنید، بلکه یاد می گیرید که اشیاء برجسته بصری را ردیابی کنید. این کتاب به شما کمک می کند تا با نشان دادن نحوه تشخیص علائم راهنمایی و رانندگی و احساسات روی چهره، مهارت های خود را بیشتر بسازید. بعداً نحوه تراز کردن تصاویر و شناسایی و ردیابی اشیاء با استفاده از شبکه های عصبی را خواهید فهمید. در پایان این کتاب OpenCV Python، تجربه عملی به دست آورده اید و در توسعه برنامه های بینایی کامپیوتری پیشرفته با توجه به نیازهای تجاری خاص مهارت خواهید داشت. آنچه یاد خواهید گرفت ایجاد جلوه های بصری در زمان واقعی با استفاده از فیلترها و تکنیک های دستکاری تصویر مانند جاخالی دادن و سوزاندن ژست های دست در زمان واقعی و انجام تجزیه و تحلیل شکل دست بر اساس خروجی سنسور مایکروسافت کینکت یادگیری استخراج ویژگی و تطبیق ویژگی ها ردیابی اشیاء دلخواه دلخواه بازسازی صحنه دنیای واقعی سه بعدی با استفاده از حرکت دوربین دو بعدی و تکنیک های بازپرداخت دوربین تشخیص چهره با استفاده از طبقه بندی آبشاری و شناسایی احساسات در چهره انسان با استفاده از پرسپترون های چندلایه طبقه بندی، بومی سازی و تشخیص اشیاء با شبکه های عصبی عمیق این کتاب کیست برای این کتاب برای کاربران سطح متوسط OpenCV است که به دنبال افزایش مهارت های خود با توسعه برنامه های کاربردی پیشرفته هستند. آشنایی با مفاهیم OpenCV و کتابخانه های پایتون و دانش اولیه زبان برنامه نویسی پایتون فرض می شود.
Get to grips with traditional computer vision algorithms and deep learning approaches, and build real-world applications with OpenCV and other machine learning frameworks Key Features Understand how to capture high-quality image data, detect and track objects, and process the actions of animals or humans Implement your learning in different areas of computer vision Explore advanced concepts in OpenCV such as machine learning, artificial neural network, and augmented reality Book Description OpenCV is a native cross-platform C++ library for computer vision, machine learning, and image processing. It is increasingly being adopted in Python for development. This book will get you hands-on with a wide range of intermediate to advanced projects using the latest version of the framework and language, OpenCV 4 and Python 3.8, instead of only covering the core concepts of OpenCV in theoretical lessons. This updated second edition will guide you through working on independent hands-on projects that focus on essential OpenCV concepts such as image processing, object detection, image manipulation, object tracking, and 3D scene reconstruction, in addition to statistical learning and neural networks. You'll begin with concepts such as image filters, Kinect depth sensor, and feature matching. As you advance, you'll not only get hands-on with reconstructing and visualizing a scene in 3D but also learn to track visually salient objects. The book will help you further build on your skills by demonstrating how to recognize traffic signs and emotions on faces. Later, you'll understand how to align images, and detect and track objects using neural networks. By the end of this OpenCV Python book, you'll have gained hands-on experience and become proficient at developing advanced computer vision apps according to specific business needs. What you will learn Generate real-time visual effects using filters and image manipulation techniques such as dodging and burning Recognize hand gestures in real-time and perform hand-shape analysis based on the output of a Microsoft Kinect sensor Learn feature extraction and feature matching to track arbitrary objects of interest Reconstruct a 3D real-world scene using 2D camera motion and camera reprojection techniques Detect faces using a cascade classifier and identify emotions in human faces using multilayer perceptrons Classify, localize, and detect objects with deep neural networks Who this book is for This book is for intermediate-level OpenCV users who are looking to enhance their skills by developing advanced applications. Familiarity with OpenCV concepts and Python libraries, and basic knowledge of the Python programming language are assumed.
Cover Title Page Copyright and Credits About Packt Contributors Table of Contents Preface Chapter 1: Fun with Filters Getting started Planning the app Creating a black-and-white pencil sketch Understanding approaches for using dodging and burning techniques Implementing a Gaussian blur with two-dimensional convolution Applying pencil sketch transformation Using an optimized version of a Gaussian blur Generating a warming and cooling filter Using color manipulation via curve shifting Implementing a curve filter using lookup tables Designing the warming and cooling effect Cartoonizing an image Using a bilateral filter for edge-aware smoothing Detecting and emphasizing prominent edges Combining colors and outlines to produce a cartoon Putting it all together Running the app Mapping the GUI base class Understanding the GUI constructor Learning about a basic GUI layout Handling video streams Drafting a custom filter layout Summary Attributions Chapter 2: Hand Gesture Recognition Using a Kinect Depth Sensor Getting started Planning the app Setting up the app Accessing the Kinect 3D sensor Utilizing OpenNI-compatible sensors Running the app and main function routine Tracking hand gestures in real time Understanding hand region segmentation Finding the most prominent depth of the image center region Applying morphological closing for smoothening Finding connected components in a segmentation mask Performing hand shape analysis Determining the contour of the segmented hand region Finding the convex hull of a contour area Finding the convexity defects of a convex hull Performing hand gesture recognition Distinguishing between different causes of convexity defects Classifying hand gestures based on the number of extended fingers Summary Chapter 3: Finding Objects via Feature Matching and Perspective Transforms Getting started Listing the tasks performed by the app Planning the app Setting up the app Running the app – the main() function routine Displaying results Understanding the process flow Learning feature extraction Looking at feature detection Detecting features in an image with SURF Obtaining feature descriptors with SURF Understanding feature matching Matching features across images with FLANN Testing the ratio for outlier removal Visualizing feature matches Mapping homography estimation Warping the image Learning feature tracking Understanding early outlier detection and rejection Seeing the algorithm in action Summary Attributions Chapter 4: 3D Scene Reconstruction Using Structure from Motion Getting started Planning the app Learning about camera calibration Understanding the pinhole camera model Estimating the intrinsic camera parameters Defining the camera calibration GUI Initializing the algorithm Collecting image and object points Finding the camera matrix Setting up the app Understanding the main routine function Implementing the SceneReconstruction3D class Estimating the camera motion from a pair of images Applying point matching with rich feature descriptors Using point matching with optic flow Finding the camera matrices Applying image rectification Reconstructing the scene Understanding 3D point cloud visualization Learning about structure from motion Summary Chapter 5: Using Computational Photography with OpenCV Getting started Planning the app Understanding the 8-bit problem Learning about RAW images Using gamma correction Understanding high-dynamic-range imaging Exploring ways to vary exposure Shutter speed Aperture ISO speed Generating HDR images using multiple exposure images Extracting exposure strength from images Estimating the camera response function Writing an HDR script using OpenCV Displaying HDR images Understanding panorama stitching Writing script arguments and filtering images Figuring out relative positions and the final picture size Finding camera parameters Creating the canvas for the panorama Blending the images together Improving panorama stitching Summary Further reading Attributions Chapter 6: Tracking Visually Salient Objects Getting started Understanding visual saliency Planning the app Setting up the app Implementing the main function Understanding the MultiObjectTracker class Mapping visual saliency Learning about Fourier analysis Understanding the natural scene statistics Generating a saliency map with the spectral residual approach Detecting proto-objects in a scene Understanding mean-shift tracking Automatically tracking all players on a soccer field Learning about the OpenCV Tracking API Putting it all together Summary Dataset attribution Chapter 7: Learning to Recognize Traffic Signs Getting started Planning the app Briefing on supervised learning concepts The training procedure The testing procedure Understanding the GTSRB dataset Parsing the dataset Learning about dataset feature extraction Understanding common preprocessing Learning about grayscale features Understanding color spaces Using SURF descriptor Mapping HOG descriptor Learning about SVMs Using SVMs for multiclass classification Training the SVM Testing the SVM Accuracy Confusion matrix Precision Recall Putting it all together Improving results with neural networks Summary Dataset attribution Chapter 8: Learning to Recognize Facial Emotions Getting started Planning the app Learning about face detection Learning about Haar-based cascade classifiers Understanding pre-trained cascade classifiers Using a pre-trained cascade classifier Understanding the FaceDetector class Detecting faces in grayscale images Preprocessing detected faces Detecting the eyes Transforming the face Collecting data Assembling a training dataset Running the application Implementing the data collector GUI Augmenting the basic layout Processing the current frame Storing the data Understanding facial emotion recognition Processing the dataset Learning about PCA Understanding MLPs Understanding a perceptron Knowing about deep architectures Crafting an MLP for facial expression recognition Training the MLP Testing the MLP Running the script Putting it all together Summary Further reading Attributions Chapter 9: Learning to Classify and Localize Objects Getting started Planning the app Preparing an inference script Preparing the dataset Downloading and parsing the dataset Creating a TensorFlow dataset Classifying with CNNs Understanding CNNs Learning about transfer learning Preparing the pet type and breed classifier Training and evaluating the classifier Localizing with CNNs Preparing the model Understanding backpropagation Training the model Seeing inference in action Summary Dataset attribution Chapter 10: Learning to Detect and Track Objects Getting started Planning the app Preparing the main script Detecting objects with SSD Using other detectors Understanding object detectors The single-object detector The sliding-window approach Single-pass detectors Learning about Intersection over Union Training SSD- and YOLO-like networks Tracking detected objects Implementing a Sort tracker Understanding the Kalman filter Using a box tracker with the Kalman filter Converting boundary boxes to observations Implementing a Kalman filter Associating detections with trackers Defining the main class of the tracker Seeing the app in action Summary Appendix A: Profiling and Accelerating Your Apps Accelerating with Numba Accelerating with the CPU Understanding Numba, CUDA, and GPU acceleration Appendix B: Setting Up a Docker Container Defining a Dockerfile Working with a GPU Other Books You May Enjoy Index