ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Observability Engineering: Achieving Production Excellence

دانلود کتاب مهندسی مشاهده پذیری: دستیابی به تعالی تولید

Observability Engineering: Achieving Production Excellence

مشخصات کتاب

Observability Engineering: Achieving Production Excellence

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1492076449, 9781492076445 
ناشر: O'Reilly Media 
سال نشر: 2022 
تعداد صفحات: 400 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 2 Mb 

قیمت کتاب (تومان) : 54,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Observability Engineering: Achieving Production Excellence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی مشاهده پذیری: دستیابی به تعالی تولید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی مشاهده پذیری: دستیابی به تعالی تولید



قابلیت مشاهده برای مهندسی، مدیریت و بهبود سیستم های پیچیده تجاری حیاتی است. از طریق این فرآیند، هر تیم مهندسی نرم افزار می تواند درک عمیق تری از عملکرد سیستم به دست آورد، بنابراین می توانید تعمیر و نگهداری مداوم را انجام دهید و ویژگی های مورد نیاز مشتریان خود را ارسال کنید. این کتاب عملی ارزش سیستم‌های قابل مشاهده را توضیح می‌دهد و به شما نشان می‌دهد که چگونه یک روش توسعه مبتنی بر مشاهده‌پذیری ایجاد کنید.

نویسندگان موسسه خیریه، لیز فونگ جونز، و جورج میراندا از Honeycomb توضیح می‌دهند که چه چیزی مشاهده‌پذیری خوب را تشکیل می‌دهد. شما چگونه می‌توانید از آنچه امروز انجام می‌دهید، بهبودهایی ایجاد کنید، و بایدها و نبایدهای عملی را برای انتقال از ابزارهای قدیمی، مانند نظارت بر معیارها و مدیریت گزارش، ارائه دهید. همچنین تأثیر مشاهده پذیری بر فرهنگ سازمان را خواهید آموخت.

شما خواهید دید:

  • ارزش تمرین قابلیت مشاهده هنگام ارائه و مدیریت برنامه ها و سیستم های پیچیده بومی ابری
  • مشاهده پذیری تاثیر در کل چرخه مهندسی نرم افزار دارد
  • مالکیت نرم افزار: چگونه تیم های عملکردی مختلف به دستیابی به SLO های سیستم کمک می کنند
  • چگونه توسعه دهندگان نرم افزار به تجربه مشتری و تأثیر کسب و کار
  • نحوه تولید کد با کیفیت برای اشکال زدایی و نگهداری سیستم آگاه از متن
  • چگونه تجزیه و تحلیل غنی از داده می تواند به شما در یافتن سریع پاسخ هنگام حفظ قابلیت اطمینان سایت کمک کند
  • </ ul>

توضیحاتی درمورد کتاب به خارجی

Observability is critical for engineering, managing, and improving complex business-critical systems. Through this process, any software engineering team can gain a deeper understanding of system performance, so you can perform ongoing maintenance and ship the features your customers need. This practical book explains the value of observable systems and shows you how to build an observability-driven development practice.

Authors Charity Majors, Liz Fong-Jones, and George Miranda from Honeycomb explain what constitutes good observability, show you how to make improvements from what you're doing today, and provide practical dos and don'ts for migrating from legacy tooling, such as metrics monitoring and log management. You'll also learn the impact observability has on organization culture.

You'll explore:

  • The value of practicing observability when delivering and managing complex cloud native applications and systems
  • The impact observability has across the entire software engineering cycle
  • Software ownership: how different functional teams help achieve system SLOs
  • How software developers contribute to customer experience and business impact
  • How to produce quality code for context-aware system debugging and maintenance
  • How data-rich analytics can help you find answers quickly when maintaining site reliability


فهرست مطالب

Cover
Copyright
Table of Contents
Foreword
Preface
	Who This Book Is For
	Why We Wrote This Book
	What You Will Learn
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
Part I. The Path to Observability
	Chapter 1. What Is Observability?
		The Mathematical Definition of Observability
		Applying Observability to Software Systems
		Mischaracterizations About Observability for Software
		Why Observability Matters Now
			Is This Really the Best Way?
			Why Are Metrics and Monitoring Not Enough?
		Debugging with Metrics Versus Observability
			The Role of Cardinality
			The Role of Dimensionality
		Debugging with Observability
		Observability Is for Modern Systems
		Conclusion
	Chapter 2. How Debugging Practices Differ Between Observability and Monitoring
		How Monitoring Data Is Used for Debugging
			Troubleshooting Behaviors When Using Dashboards
			The Limitations of Troubleshooting by Intuition
			Traditional Monitoring Is Fundamentally Reactive
		How Observability Enables Better Debugging
		Conclusion
	Chapter 3. Lessons from Scaling Without Observability
		An Introduction to Parse
		Scaling at Parse
		The Evolution Toward Modern Systems
		The Evolution Toward Modern Practices
		Shifting Practices at Parse
		Conclusion
	Chapter 4. How Observability Relates to DevOps, SRE, and Cloud Native
		Cloud Native, DevOps, and SRE in a Nutshell
		Observability: Debugging Then Versus Now
		Observability Empowers DevOps and SRE Practices
		Conclusion
Part II. Fundamentals of Observability
	Chapter 5. Structured Events Are the Building Blocks of Observability
		Debugging with Structured Events
		The Limitations of Metrics as a Building Block
		The Limitations of Traditional Logs as a Building Block
			Unstructured Logs
			Structured Logs
		Properties of Events That Are Useful in Debugging
		Conclusion
	Chapter 6. Stitching Events into Traces
		Distributed Tracing and Why It Matters Now
		The Components of Tracing
		Instrumenting a Trace the Hard Way
		Adding Custom Fields into Trace Spans
		Stitching Events into Traces
		Conclusion
	Chapter 7. Instrumentation with OpenTelemetry
		A Brief Introduction to Instrumentation
		Open Instrumentation Standards
		Instrumentation Using Code-Based Examples
			Start with Automatic Instrumentation
			Add Custom Instrumentation
			Send Instrumentation Data to a Backend System
		Conclusion
	Chapter 8. Analyzing Events to Achieve Observability
		Debugging from Known Conditions
		Debugging from First Principles
			Using the Core Analysis Loop
			Automating the Brute-Force Portion of the Core Analysis Loop
		This Misleading Promise of AIOps
		Conclusion
	Chapter 9. How Observability and Monitoring Come Together
		Where Monitoring Fits
		Where Observability Fits
		System Versus Software Considerations
		Assessing Your Organizational Needs
			Exceptions: Infrastructure Monitoring That Can’t Be Ignored
			Real-World Examples
		Conclusion
Part III. Observability for Teams
	Chapter 10. Applying Observability Practices in Your Team
		Join a Community Group
		Start with the Biggest Pain Points
		Buy Instead of Build
		Flesh Out Your Instrumentation Iteratively
		Look for Opportunities to Leverage Existing Efforts
		Prepare for the Hardest Last Push
		Conclusion
	Chapter 11. Observability-Driven Development
		Test-Driven Development
		Observability in the Development Cycle
		Determining Where to Debug
		Debugging in the Time of Microservices
		How Instrumentation Drives Observability
		Shifting Observability Left
		Using Observability to Speed Up Software Delivery
		Conclusion
	Chapter 12. Using Service-Level Objectives for Reliability
		Traditional Monitoring Approaches Create Dangerous Alert Fatigue
		Threshold Alerting Is for Known-Unknowns Only
		User Experience Is a North Star
		What Is a Service-Level Objective?
			Reliable Alerting with SLOs
			Changing Culture Toward SLO-Based Alerts: A Case Study
		Conclusion
	Chapter 13. Acting on and Debugging SLO-Based Alerts
		Alerting Before Your Error Budget Is Empty
		Framing Time as a Sliding Window
		Forecasting to Create a Predictive Burn Alert
			The Lookahead Window
			The Baseline Window
			Acting on SLO Burn Alerts
		Using Observability Data for SLOs Versus Time-Series Data
		Conclusion
	Chapter 14. Observability and the Software Supply Chain
		Why Slack Needed Observability
		Instrumentation: Shared Client Libraries and Dimensions
		Case Studies: Operationalizing the Supply Chain
			Understanding Context Through Tooling
			Embedding Actionable Alerting
			Understanding What Changed
		Conclusion
Part IV. Observability at Scale
	Chapter 15. Build Versus Buy and Return on Investment
		How to Analyze the ROI of Observability
		The Real Costs of Building Your Own
			The Hidden Costs of Using “Free” Software
			The Benefits of Building Your Own
			The Risks of Building Your Own
		The Real Costs of Buying Software
			The Hidden Financial Costs of Commercial Software
			The Hidden Nonfinancial Costs of Commercial Software
			The Benefits of Buying Commercial Software
			The Risks of Buying Commercial Software
		Buy Versus Build Is Not a Binary Choice
		Conclusion
	Chapter 16. Efficient Data Storage
		The Functional Requirements for Observability
			Time-Series Databases Are Inadequate for Observability
			Other Possible Data Stores
			Data Storage Strategies
		Case Study: The Implementation of Honeycomb’s Retriever
			Partitioning Data by Time
			Storing Data by Column Within Segments
			Performing Query Workloads
			Querying for Traces
			Querying Data in Real Time
			Making It Affordable with Tiering
			Making It Fast with Parallelism
			Dealing with High Cardinality
			Scaling and Durability Strategies
			Notes on Building Your Own Efficient Data Store
		Conclusion
	Chapter 17. Cheap and Accurate Enough: Sampling
		Sampling to Refine Your Data Collection
		Using Different Approaches to Sampling
			Constant-Probability Sampling
			Sampling on Recent Traffic Volume
			Sampling Based on Event Content (Keys)
			Combining per Key and Historical Methods
			Choosing Dynamic Sampling Options
			When to Make a Sampling Decision for Traces
		Translating Sampling Strategies into Code
			The Base Case
			Fixed-Rate Sampling
			Recording the Sample Rate
			Consistent Sampling
			Target Rate Sampling
			Having More Than One Static Sample Rate
			Sampling by Key and Target Rate
			Sampling with Dynamic Rates on Arbitrarily Many Keys
			Putting It All Together: Head and Tail per Key Target Rate Sampling
		Conclusion
	Chapter 18. Telemetry Management with Pipelines
		Attributes of Telemetry Pipelines
			Routing
			Security and Compliance
			Workload Isolation
			Data Buffering
			Capacity Management
			Data Filtering and Augmentation
			Data Transformation
			Ensuring Data Quality and Consistency
		Managing a Telemetry Pipeline: Anatomy
		Challenges When Managing a Telemetry Pipeline
			Performance
			Correctness
			Availability
			Reliability
			Isolation
			Data Freshness
		Use Case: Telemetry Management at Slack
			Metrics Aggregation
			Logs and Trace Events
		Open Source Alternatives
		Managing a Telemetry Pipeline: Build Versus Buy
		Conclusion
Part V. Spreading Observability Culture
	Chapter 19. The Business Case for Observability
		The Reactive Approach to Introducing Change
		The Return on Investment of Observability
		The Proactive Approach to Introducing Change
		Introducing Observability as a Practice
		Using the Appropriate Tools
			Instrumentation
			Data Storage and Analytics
			Rolling Out Tools to Your Teams
		Knowing When You Have Enough Observability
		Conclusion
	Chapter 20. Observability’s Stakeholders and Allies
		Recognizing Nonengineering Observability Needs
		Creating Observability Allies in Practice
			Customer Support Teams
			Customer Success and Product Teams
			Sales and Executive Teams
		Using Observability Versus Business Intelligence Tools
			Query Execution Time
			Accuracy
			Recency
			Structure
			Time Windows
			Ephemerality
		Using Observability and BI Tools Together in Practice
		Conclusion
	Chapter 21. An Observability Maturity Model
		A Note About Maturity Models
		Why Observability Needs a Maturity Model
		About the Observability Maturity Model
		Capabilities Referenced in the OMM
			Respond to System Failure with Resilience
			Deliver High-Quality Code
			Manage Complexity and Technical Debt
			Release on a Predictable Cadence
			Understand User Behavior
		Using the OMM for Your Organization
		Conclusion
	Chapter 22. Where to Go from Here
		Observability, Then Versus Now
		Additional Resources
		Predictions for Where Observability Is Going
Index
About the Authors
Colophon




نظرات کاربران