دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Charity Majors, Liz Fong-Jones, George Miranda سری: ISBN (شابک) : 1492076449, 9781492076445 ناشر: O'Reilly Media سال نشر: 2022 تعداد صفحات: 400 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 2 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Observability Engineering: Achieving Production Excellence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی مشاهده پذیری: دستیابی به تعالی تولید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
قابلیت مشاهده برای مهندسی، مدیریت و بهبود سیستم های پیچیده تجاری حیاتی است. از طریق این فرآیند، هر تیم مهندسی نرم افزار می تواند درک عمیق تری از عملکرد سیستم به دست آورد، بنابراین می توانید تعمیر و نگهداری مداوم را انجام دهید و ویژگی های مورد نیاز مشتریان خود را ارسال کنید. این کتاب عملی ارزش سیستمهای قابل مشاهده را توضیح میدهد و به شما نشان میدهد که چگونه یک روش توسعه مبتنی بر مشاهدهپذیری ایجاد کنید.
نویسندگان موسسه خیریه، لیز فونگ جونز، و جورج میراندا از Honeycomb توضیح میدهند که چه چیزی مشاهدهپذیری خوب را تشکیل میدهد. شما چگونه میتوانید از آنچه امروز انجام میدهید، بهبودهایی ایجاد کنید، و بایدها و نبایدهای عملی را برای انتقال از ابزارهای قدیمی، مانند نظارت بر معیارها و مدیریت گزارش، ارائه دهید. همچنین تأثیر مشاهده پذیری بر فرهنگ سازمان را خواهید آموخت.
شما خواهید دید:
Observability is critical for engineering, managing, and improving complex business-critical systems. Through this process, any software engineering team can gain a deeper understanding of system performance, so you can perform ongoing maintenance and ship the features your customers need. This practical book explains the value of observable systems and shows you how to build an observability-driven development practice.
Authors Charity Majors, Liz Fong-Jones, and George Miranda from Honeycomb explain what constitutes good observability, show you how to make improvements from what you're doing today, and provide practical dos and don'ts for migrating from legacy tooling, such as metrics monitoring and log management. You'll also learn the impact observability has on organization culture.
You'll explore:
Cover Copyright Table of Contents Foreword Preface Who This Book Is For Why We Wrote This Book What You Will Learn Conventions Used in This Book Using Code Examples O’Reilly Online Learning How to Contact Us Acknowledgments Part I. The Path to Observability Chapter 1. What Is Observability? The Mathematical Definition of Observability Applying Observability to Software Systems Mischaracterizations About Observability for Software Why Observability Matters Now Is This Really the Best Way? Why Are Metrics and Monitoring Not Enough? Debugging with Metrics Versus Observability The Role of Cardinality The Role of Dimensionality Debugging with Observability Observability Is for Modern Systems Conclusion Chapter 2. How Debugging Practices Differ Between Observability and Monitoring How Monitoring Data Is Used for Debugging Troubleshooting Behaviors When Using Dashboards The Limitations of Troubleshooting by Intuition Traditional Monitoring Is Fundamentally Reactive How Observability Enables Better Debugging Conclusion Chapter 3. Lessons from Scaling Without Observability An Introduction to Parse Scaling at Parse The Evolution Toward Modern Systems The Evolution Toward Modern Practices Shifting Practices at Parse Conclusion Chapter 4. How Observability Relates to DevOps, SRE, and Cloud Native Cloud Native, DevOps, and SRE in a Nutshell Observability: Debugging Then Versus Now Observability Empowers DevOps and SRE Practices Conclusion Part II. Fundamentals of Observability Chapter 5. Structured Events Are the Building Blocks of Observability Debugging with Structured Events The Limitations of Metrics as a Building Block The Limitations of Traditional Logs as a Building Block Unstructured Logs Structured Logs Properties of Events That Are Useful in Debugging Conclusion Chapter 6. Stitching Events into Traces Distributed Tracing and Why It Matters Now The Components of Tracing Instrumenting a Trace the Hard Way Adding Custom Fields into Trace Spans Stitching Events into Traces Conclusion Chapter 7. Instrumentation with OpenTelemetry A Brief Introduction to Instrumentation Open Instrumentation Standards Instrumentation Using Code-Based Examples Start with Automatic Instrumentation Add Custom Instrumentation Send Instrumentation Data to a Backend System Conclusion Chapter 8. Analyzing Events to Achieve Observability Debugging from Known Conditions Debugging from First Principles Using the Core Analysis Loop Automating the Brute-Force Portion of the Core Analysis Loop This Misleading Promise of AIOps Conclusion Chapter 9. How Observability and Monitoring Come Together Where Monitoring Fits Where Observability Fits System Versus Software Considerations Assessing Your Organizational Needs Exceptions: Infrastructure Monitoring That Can’t Be Ignored Real-World Examples Conclusion Part III. Observability for Teams Chapter 10. Applying Observability Practices in Your Team Join a Community Group Start with the Biggest Pain Points Buy Instead of Build Flesh Out Your Instrumentation Iteratively Look for Opportunities to Leverage Existing Efforts Prepare for the Hardest Last Push Conclusion Chapter 11. Observability-Driven Development Test-Driven Development Observability in the Development Cycle Determining Where to Debug Debugging in the Time of Microservices How Instrumentation Drives Observability Shifting Observability Left Using Observability to Speed Up Software Delivery Conclusion Chapter 12. Using Service-Level Objectives for Reliability Traditional Monitoring Approaches Create Dangerous Alert Fatigue Threshold Alerting Is for Known-Unknowns Only User Experience Is a North Star What Is a Service-Level Objective? Reliable Alerting with SLOs Changing Culture Toward SLO-Based Alerts: A Case Study Conclusion Chapter 13. Acting on and Debugging SLO-Based Alerts Alerting Before Your Error Budget Is Empty Framing Time as a Sliding Window Forecasting to Create a Predictive Burn Alert The Lookahead Window The Baseline Window Acting on SLO Burn Alerts Using Observability Data for SLOs Versus Time-Series Data Conclusion Chapter 14. Observability and the Software Supply Chain Why Slack Needed Observability Instrumentation: Shared Client Libraries and Dimensions Case Studies: Operationalizing the Supply Chain Understanding Context Through Tooling Embedding Actionable Alerting Understanding What Changed Conclusion Part IV. Observability at Scale Chapter 15. Build Versus Buy and Return on Investment How to Analyze the ROI of Observability The Real Costs of Building Your Own The Hidden Costs of Using “Free” Software The Benefits of Building Your Own The Risks of Building Your Own The Real Costs of Buying Software The Hidden Financial Costs of Commercial Software The Hidden Nonfinancial Costs of Commercial Software The Benefits of Buying Commercial Software The Risks of Buying Commercial Software Buy Versus Build Is Not a Binary Choice Conclusion Chapter 16. Efficient Data Storage The Functional Requirements for Observability Time-Series Databases Are Inadequate for Observability Other Possible Data Stores Data Storage Strategies Case Study: The Implementation of Honeycomb’s Retriever Partitioning Data by Time Storing Data by Column Within Segments Performing Query Workloads Querying for Traces Querying Data in Real Time Making It Affordable with Tiering Making It Fast with Parallelism Dealing with High Cardinality Scaling and Durability Strategies Notes on Building Your Own Efficient Data Store Conclusion Chapter 17. Cheap and Accurate Enough: Sampling Sampling to Refine Your Data Collection Using Different Approaches to Sampling Constant-Probability Sampling Sampling on Recent Traffic Volume Sampling Based on Event Content (Keys) Combining per Key and Historical Methods Choosing Dynamic Sampling Options When to Make a Sampling Decision for Traces Translating Sampling Strategies into Code The Base Case Fixed-Rate Sampling Recording the Sample Rate Consistent Sampling Target Rate Sampling Having More Than One Static Sample Rate Sampling by Key and Target Rate Sampling with Dynamic Rates on Arbitrarily Many Keys Putting It All Together: Head and Tail per Key Target Rate Sampling Conclusion Chapter 18. Telemetry Management with Pipelines Attributes of Telemetry Pipelines Routing Security and Compliance Workload Isolation Data Buffering Capacity Management Data Filtering and Augmentation Data Transformation Ensuring Data Quality and Consistency Managing a Telemetry Pipeline: Anatomy Challenges When Managing a Telemetry Pipeline Performance Correctness Availability Reliability Isolation Data Freshness Use Case: Telemetry Management at Slack Metrics Aggregation Logs and Trace Events Open Source Alternatives Managing a Telemetry Pipeline: Build Versus Buy Conclusion Part V. Spreading Observability Culture Chapter 19. The Business Case for Observability The Reactive Approach to Introducing Change The Return on Investment of Observability The Proactive Approach to Introducing Change Introducing Observability as a Practice Using the Appropriate Tools Instrumentation Data Storage and Analytics Rolling Out Tools to Your Teams Knowing When You Have Enough Observability Conclusion Chapter 20. Observability’s Stakeholders and Allies Recognizing Nonengineering Observability Needs Creating Observability Allies in Practice Customer Support Teams Customer Success and Product Teams Sales and Executive Teams Using Observability Versus Business Intelligence Tools Query Execution Time Accuracy Recency Structure Time Windows Ephemerality Using Observability and BI Tools Together in Practice Conclusion Chapter 21. An Observability Maturity Model A Note About Maturity Models Why Observability Needs a Maturity Model About the Observability Maturity Model Capabilities Referenced in the OMM Respond to System Failure with Resilience Deliver High-Quality Code Manage Complexity and Technical Debt Release on a Predictable Cadence Understand User Behavior Using the OMM for Your Organization Conclusion Chapter 22. Where to Go from Here Observability, Then Versus Now Additional Resources Predictions for Where Observability Is Going Index About the Authors Colophon