دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: نظریه شماره ویرایش: نویسندگان: Roger B. Nelsen سری: Classroom resource materials Vol. 55 ISBN (شابک) : 1470443988, 9781470443986 ناشر: MAA Press سال نشر: 2018 تعداد صفحات: 165 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
کلمات کلیدی مربوط به کتاب قطعات نظریه اعداد: یک رویکرد بصری: نظریه اعداد
در صورت تبدیل فایل کتاب Nuggets of Number Theory: A Visual Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب قطعات نظریه اعداد: یک رویکرد بصری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Nuggets of Number Theory طرفداران تفکر بصری، تئوری اعداد و ارتباطات شگفت انگیز را به خود جذب می کند. این کتاب شامل صدها توضیح تصویری از نتایج نظریه اعداد ابتدایی است. البته اعداد شکلی و ثلاث فیثاغورثی برجسته هستند، اما شواهدی نیز برای قضایای کوچک فرما و قضایای ویلسون وجود دارد. فیبوناچی و اعداد کامل، معادله پل، و کسرهای ادامه دار، همگی در این مجموعه جذاب نمایش بصری پیدا می کنند. این منبع غنی از الهامات بصری برای هر کسی خواهد بود که تئوری اعداد را آموزش میدهد یا یاد میگیرد و لذت بیپایانی را برای کسانی که علاقهمند به نگاه کردن به نظریه اعداد با چشمهای جدید هستند، فراهم میکند. نویسنده راجر نلسن یکی از همکاران قدیمی "اثبات بدون کلام" در مجله ریاضیات MAA و مجله ریاضیات کالج است. این دوازدهمین کتاب او با انتشارات MAA است.
Nuggets of Number Theory will attract fans of visual thinking, number theory, and surprising connections. This book contains hundreds of visual explanations of results from elementary number theory. Figurate numbers and Pythagorean triples feature prominently, of course, but there are also proofs of Fermat's Little and Wilson's Theorems. Fibonacci and perfect numbers, Pell's equation, and continued fractions all find visual representation in this charming collection. It will be a rich source of visual inspiration for anyone teaching, or learning, number theory and will provide endless pleasure to those interested in looking at number theory with new eyes. Author Roger Nelsen is a long-time contributor of “Proofs Without Words” in the MAA's Mathematics Magazine and College Mathematics Journal. This is his twelfth book with MAA Press.
Cover......Page 1
Title page......Page 4
Copyright......Page 5
Contents......Page 6
Preface......Page 10
1.1. Polygonal numbers......Page 12
1.2. Triangular number identities......Page 18
1.3. Oblong numbers and the infinitude of primes......Page 24
1.4. Pentagonal and other figurate numbers......Page 25
1.5. Polite numbers......Page 27
1.6. Three-dimensional figurate numbers......Page 29
1.7. Exercises......Page 32
2.1. Congruence results for triangular numbers......Page 36
2.2. Congruence results for other figurate numbers......Page 38
2.3. Fermat’s little theorem......Page 41
2.4. Wilson’s theorem......Page 43
2.5. Exercises......Page 44
Chapter 3. Diophantine Equations......Page 46
3.1. Triangles and squares......Page 47
3.2. Linear Diophantine equations......Page 49
3.3. Linear congruences and the Chinese remainder theorem......Page 52
3.4. The Pell equation ²-2²=1......Page 55
3.5. The Pell equation ²-3²=1......Page 57
3.6. The Pell equations ²-²=1......Page 60
3.7. Exercises......Page 63
Chapter 4. Pythagorean Triples......Page 66
4.1. Euclid’s formula......Page 67
4.2. Pythagorean triples and means of odd squares......Page 68
4.3. The carpets theorem......Page 69
4.4. Pythagorean triples and the factors of even squares......Page 70
4.5. Almost isosceles primitive Pythagorean triples......Page 72
4.6. A Pythagorean triple tree......Page 75
4.8. Pythagorean primes and triangular numbers......Page 78
4.9. Divisibility properties......Page 80
4.10. Pythagorean triangles......Page 81
4.12. Sums of two squares......Page 84
4.13. Pythagorean quadruples and Pythagorean boxes......Page 87
4.14. Exercises......Page 90
5.1. The irrationality of √2......Page 94
5.2. Rational approximations to √2: Pell equations......Page 99
5.3. Rational approximations to √2: Almost isosceles PPTs......Page 100
5.4. The irrationality of √3 and √5......Page 101
5.5. The irrationality of √ for non-square ......Page 104
5.6. The golden ratio and the golden rectangle......Page 105
5.7. The golden ratio and the regular pentagon......Page 107
5.8. Periodic continued fractions......Page 109
5.9. Exercises......Page 112
Chapter 6. Fibonacci and Lucas Numbers......Page 114
6.1. The Fibonacci sequence in art and nature......Page 115
6.2. Fibonacci parallelograms, triangles, and trapezoids......Page 117
6.3. Fibonacci rectangles and squares......Page 118
6.4. Diagonal sums in Pascal’s triangle......Page 124
6.5. Lucas numbers......Page 126
6.6. The Pell equations ²-5²=±4 and Binet’s formula......Page 128
6.7. Exercises......Page 132
7.1. Euclid’s formula......Page 134
7.2. Even perfect numbers and geometric progressions......Page 136
7.3. Even perfect numbers and triangular numbers......Page 137
7.5. Even perfect numbers end in 6 or 28......Page 139
7.6. Even perfect numbers modulo 7......Page 141
7.8. Odd perfect numbers......Page 142
7.9. Exercises......Page 144
Chapter 1......Page 146
Chapter 2......Page 148
Chapter 3......Page 149
Chapter 4......Page 152
Chapter 5......Page 153
Chapter 6......Page 155
Chapter 7......Page 156
Bibliography......Page 160
Index......Page 162
Back Cover......Page 165