دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوتکنولوژی ویرایش: نویسندگان: Harikesh Bahadur Singh. Anukool Vaishnav سری: ISBN (شابک) : 0323855814, 9780323855815 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 564 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحولات جدید و آینده در بیوتکنولوژی میکروبی و مهندسی زیستی: کشاورزی پایدار: بازبینی مواد شیمیایی سبز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کشاورزی پایدار: بازدید مجدد از مواد شیمیایی سبز در مورد فنآوریهای سبز بحث میکند که به ما در درک مواد شیمیایی سبز جدید برای کاهش پاتوژنهای گیاهی و القای رشد گیاه و همچنین سلامت خاک کمک میکند. پرمصرف ترین مواد شیمیایی سبز آنتی اکسیدان ها، محافظت کننده های اسمزی و فیتوهورمون ها هستند. این کتاب مرتبطترین اطلاعات را در مورد چگونگی استفاده از منابع میکروبی برای توسعه فرمولهای جدید برای این نوع مواد شیمیایی و فناوریها برای کاربردهای میدانی گرد هم میآورد. این کتاب به مهندسان شیمی، بیوشیمیدانان، شیمیدانان کشاورزی، صنعتگران، محققان و دانشمندانی که روی کشاورزی پایدار کار میکنند، مطالب مرجع ارائه میدهد.
Sustainable Agriculture: Revisiting Green Chemicals discusses green technologies that help us to understand new green chemicals to reduce plant pathogens and induce plant growth as well as soil health. The most used green chemicals are antioxidants, osmoprotectants, and phytohormones. This book brings together the most relevant information on how we can use microbial resources to develop new formulations for these types of chemicals and technologies for field application. The book offers reference material to chemical engineers, biochemists, agrochemists, industrialists, researchers, and scientists working on sustainable agriculture.
Front Cover New and Future Developments in Microbial Biotechnology and Bioengineering Copyright Page Contents List of contributors About the editors Preface 1 Alternative strategies to synthetic chemical fertilizers: revitalization of soil quality for sustainable agriculture usin... 1.1 Introduction 1.2 Green manure for the revitalization of soil quality 1.3 Organic compost for the revitalization of soil quality 1.4 Biochar for the revitalization of soil quality 1.4.1 What is biochar? 1.5 Effects of biochar on the nutrient availability in soil 1.6 Effects of biochar on soil quality 1.7 Microbial carrier of biochar 1.8 Use of biochar for remediation in agricultural soils 1.9 Uncertainties of biochar 1.10 Future prospects of biochar use in agricultural soils 1.11 Organo-mineral fertilizers: past, present, and future 1.11.1 What is an organo-mineral fertilizer? 1.12 Effects of organo-mineral fertilizers on soil productivity 1.13 Effects of organo-mineral fertilizers on plant growth and plant nutrient use efficiency 1.14 Role of organo-mineral fertilizers in sustainable agriculture 1.15 Bio-fertilizers 1.16 Future perspectives of bio-fertilizers References 2 Application of biostimulants to improve agronomic and physiological responses of plants: a review 2.1 Introduction 2.2 The response of plants to biostimulant elements 2.3 Biostimulants: definitions and classifications 2.4 Biostimulant origins 2.5 Factors of biostimulants on growth 2.6 The efficiency of biostimulants on the chemical composition 2.7 Biostimulant use on vegetable crops 2.8 Conclusions References 3 Green nanotechnology: a paradigm, panacea and new perspective for sustainable agriculture 3.1 Introduction 3.1.1 Background 3.1.2 Green nanotechnology 3.1.3 Nanomaterials or nanoparticles 3.1.4 Brief description of green synthesis of nanomaterial and characterization 3.1.5 Overview of engineered nanomaterials 3.1.6 Classification of nanomaterials 3.1.6.1 Nanoemulsions 3.1.6.2 Nanoclays 3.1.6.3 Nanoparticles 3.1.6.3.1 Inorganic nanoparticles 3.1.6.3.2 Organic nanoparticle 3.1.6.4 Fluorescent nanomaterials 3.1.7 Factors affecting the effect of engineered nanomaterials 3.2 Review literature and recent developments 3.2.1 Occurrence of nanomaterial in a living system 3.2.2 Occurrence of nanomaterial in the agriculture system 3.2.3 Uptake and translocation mechanism of nanoparticles in plants 3.2.3.1 Uptake and translocation of nanoparticles 3.2.3.1.1 Foliar uptake and translocation of NPs 3.2.3.1.2 The uptake and translocation of nanoparticles in the plant via the root system 3.2.4 Phytotoxicity of engineered nanomaterials 3.2.5 Green nanotechnology approach for sustainable agriculture 3.2.5.1 Increase productivity 3.2.5.2 Crop protection 3.2.5.2.1 Nanofertilizers 3.2.5.2.2 Nanopesticides 3.2.5.3 Precision farming 3.2.5.4 Stress tolerance 3.2.5.5 Soil enrichment 3.2.5.6 Crop growth 3.2.5.7 Crop improvement 3.2.5.8 Pollution monitoring 3.2.5.8.1 Diagnostic 3.2.5.8.2 Pollutant remediation 3.2.6 Green nanotechnology approaches in other sectors 3.2.6.1 Approaches to green nanotechnology for engineering smart plant sensors 3.2.6.2 Approaches to green nanotechnology for the food sector 3.2.6.3 Approaches to green nanotechnology for water and wastewater treatment 3.2.6.4 Approaches to green nanotechnology for pollution monitoring 3.2.6.5 Approaches to green nanotechnology for the energy sector and photovoltaic cells 3.2.6.6 Approaches to green nanotechnology for nanofabrics 3.2.6.7 Approaches of nanobiotechnology for medicines, drugs, defense, and security 3.2.6.8 Approaches to nanobiotechnology for cosmetics 3.2.6.9 Approaches of nanobiotechnology for electronics, fuel cells, batteries, space, chemical sensors, automobiles, and t... 3.3 Conclusion and future prospects References 4 Feasibility and challenges of biopesticides application 4.1 Introduction 4.2 Biopesticides 4.2.1 Microbial biopesticides 4.2.2 Plant-incorporated protectants 4.2.3 Biochemical pesticides 4.3 Merits and disadvantages of biopesticides 4.4 Role of biopesticides 4.5 Application of biopesticides 4.6 Commercialization of biopesticides 4.7 Conclusion and recommendations Acknowledgments References 5 How the soil nitrogen nutrient promotes plant growth—a critical assessment 5.1 Introduction 5.1.1 One-to-one care for soil N controlling 5.1.2 Status of N concentration in planting soil 5.1.3 N mineralization and immobilization from soil organic matter 5.1.4 Is microbe helping in plant nitrogen acquisition? 5.1.5 Nitrogen uptake and assimilation in plants 5.1.6 N localization in plants 5.1.7 Crosstalk of N, NO, and N transporters 5.1.8 Approaches for improved N fertilization 5.1.9 Sol nitrogen management through agronomic cropping practice nitrogen 5.2 Conclusion References 6 Morphological and phytochemical changes of Cannabis sativa L. affected by light spectra 6.1 Introduction 6.2 Secondary metabolites in cannabis 6.3 Biosynthesis pathway of cannabinoids 6.4 How to analyze and measure the amount of cannabinoids in the plant 6.5 The importance of light spectra in plant cultivation 6.6 Examining the effects of light spectra on cannabis 6.6.1 Morphological characteristics 6.6.2 Phytochemical characteristics 6.7 Conclusion References 7 Application of phosphite as a biostimulant in agriculture 7.1 Introduction 7.2 Chemistry of Phi and its metabolism in plants 7.3 Phosphite as a biostimulant in agriculture 7.4 Cereal and pulse crops 7.5 Fruits 7.6 Vegetables 7.7 Other food crops 7.8 Beyond agricultural applications of Phi: biotechnological and industrial usage 7.9 Conclusion and prospects References 8 Sustainable mainframes for control of Sugarcane early shoot borer, Chilo infuscatellus (Snellen) 8.1 Introduction 8.2 Biology of early shoot borer on sugarcane 8.2.1 Embryonic development 8.2.2 Larval development 8.2.3 The external appearance of pupa form 8.2.4 Description and morph metrics of adult 8.3 Integrated pest management for early shoot borer, Chilo infuscatellus 8.4 Design making stage for early shoot borer 8.5 Role of soil nutrients on the incidence of Chilo infuscatellus on sugarcane varieties 8.6 Utilization of eggs parasitoid 8.7 Genotype×role of climatic factors in under irrigation condition in sugarcane at advanced screening stages 8.8 Adumbrate the molecular markers character of sugarcane forming resistance against early shoot borer 8.9 Application of Pheromone traps techniques 8.10 In vitro bioassay to determine the toxicity of cry 1f protein effective against Chilo Infuscatellus 8.11 Synthesize Bt genes effective in the management of early shoot borer 8.12 Effect of granulosis virus on early shoot borer 8.13 Conclusions References 9 Levulinic acid: a potent green chemical in sustainable agriculture 9.1 Introduction 9.2 Levulinic acid: will it replace fossil fuels? 9.3 Chemical and physical properties 9.4 Application of levulinic acid and its derivatives 9.4.1 Fuel or fuel additives 9.4.2 Pharmaceuticals and medicines 9.4.3 Food additives and preservatives 9.4.4 Resin and adhesives 9.4.5 Solvent 9.4.6 Other uses of levulinic acid in product preparations 9.5 Industrially important derivatives of levulinic acid, applications, and synthesis 9.5.1 Diphenolic acids 9.5.2 Δ-Aminolevulinic acid 9.5.3 2-Methyltetrahydrofuran 9.5.4 &e_0263;-Valerolactone 9.5.5 Succinic acid 9.5.6 Pyrrolidones 9.5.7 Levulinic ketals 9.5.8 Levulinate esters 9.6 Synthesis of levulinic acid 9.6.1 Levulinic acid production from first-generation biomass 9.6.1.1 Sugars 9.6.2 From the second generation of biomass 9.6.2.1 Lignocellulosic feedstock 9.6.3 From other renewable resources 9.6.4 The third generation of biomass 9.7 Different processes for levulinic acid synthesis 9.7.1 Biofine process 9.7.2 Homogenous catalytic system 9.7.3 Heterogeneous catalytic system 9.7.4 Biphasic system 9.7.5 Ionic liquids system 9.7.6 Supercritical fluid system 9.8 Bottlenecks of levulinic acid production 9.9 Conclusion and future remarks References 10 Role of chitosan in eco-friendly management of plant diseases for sustainable agriculture 10.1 Introduction 10.2 Sources of chitosan and its chemical structure 10.2.1 Chemical structure of chitosan 10.2.2 Sources of chitosan 10.3 Application of chitosan in plant growth promotion and yield improvement 10.4 Application of chitosan in plant protection 10.5 Mode of action 10.5.1 Mode of action of antimicrobial activity 10.6 Factors affecting chitosan activity 10.6.1 Microbial factors 10.6.2 Intrinsic factors of chitosan 10.6.2.1 Positive charge density 10.6.2.2 Molecular weight 10.6.2.3 Hydrophobic/hydrophilic characteristics 10.6.2.4 Chelating capacity 10.6.3 Physical state 10.6.3.1 Antimicrobial activity in a soluble state 10.6.3.2 Antimicrobial activity in solid-state 10.6.4 Environmental factors 10.6.4.1 pH is too an important factor 10.6.4.2 Ionic strength 10.6.4.3 Time and temperature 10.7 Conclusion References 11 Role of trehalose in plant–rhizobia interaction and induced abiotic stress tolerance 11.1 Introduction 11.1.1 Trehalose—an abiotic stress protectant metabolite in rhizobia 11.1.2 Trehalose—an abiotic stress protectants metabolite in plants 11.2 Trehalose biosynthesis pathways in microorganisms and plants 11.2.1 Pathways of trehalose biosynthesis 11.2.2 Trehalase enzyme: trehalose catabolic enzyme 11.3 Genetic modification of plants and microorganisms for higher trehalose biosynthesis and external amendments of trehalo... 11.4 Role of trehalose in microbial protection from abiotic stress 11.5 Role of trehalose in Rhizobium-legume symbiosis and abiotic stress tolerance 11.6 Use of trehalose in seed priming, improved shelf life, preservation, and maintenance of microbial strains 11.7 Conclusion and future prospects Acknowledgments References 12 Combinative effect of seed priming with plant growth-promoting rhizobacteria and green chemicals on plant growth and str... 12.1 Introduction 12.2 Biopriming 12.3 Mechanism of priming 12.4 Molecular, biochemical, and physiological changes in seeds on priming 12.5 Recent strategies and operators of seed priming 12.5.1 Hydropriming 12.5.2 Halopriming 12.5.3 Osmohardening 12.5.4 Matrix priming 12.5.5 On-farm priming 12.5.6 Hormone enhancer priming 12.5.7 Micronutrient seed priming 12.5.8 Chemical priming 12.5.9 Nanoparticle priming 12.6 The potential of green chemicals seed priming synthesized with nanoparticles to promote plant growth 12.7 Components influencing the seed priming process 12.8 Essentiality of biopriming in stress forbearance 12.9 Role of biopriming against abiotic stress 12.10 Modes of plant growth-promoting rhizobacteria interceded drought and salt stress resilience 12.11 Beneficial effects of seed priming 12.12 Conclusion and future prospects References 13 Burgeoning trends using green chemicals to impede the obliterating invasive insects 13.1 Introduction 13.2 Future prospects and conclusions References 14 Routing microbial biosurfactants to agriculture for revitalization of soil and plant growth 14.1 Introduction 14.2 Mechanisms of action of surfactant molecules on surfaces and interfaces 14.3 Possible applications and environmental toxicity 14.4 The surfactants of biological origin 14.5 Microorganisms involved in the production of biosurfactants 14.6 Production and extraction of microbial biosurfactants 14.7 Biosurfactants as a possible stimulant in agriculture 14.8 Seed germination and plant growth enhancement 14.9 Biosurfactants in nutrient mobilization 14.10 Biosurfactants as biocontrol agents 14.11 Conclusion and future prospects References 15 Nanopriming in sustainable agriculture: recent advances, emerging challenges and future prospective 15.1 Introduction 15.2 Nanotechnology in agricultural sustainability 15.3 Seed priming and its implications in agriculture 15.4 Nanopriming 15.5 The mechanism underlying the nanopriming of seeds 15.5.1 Mechanism of nanoparticles uptake during seed germination 15.5.2 Role of reactive oxygen species and phytohormones during germination using nanoprimed seeds 15.6 Influences of nanopriming at different plant growth stages 15.6.1 Germination stage 15.6.2 Vegetative stage 15.6.3 Reproductive stage 15.7 Nanopriming in improving various abiotic and biotic stresses 15.7.1 Drought stress 15.7.2 Salinity stress 15.7.3 Heavy metal stress 15.7.4 Nanopriming for improving biotic stress conditions 15.8 Other implications of nanopriming for improving sustainability 15.9 Summary References 16 Toxicological assessment of biobased products: trends and challenges 16.1 Raw material for biobased products 16.1.1 Biomass 16.1.2 Enzymatic extracts 16.1.3 Microorganisms 16.1.4 Examples of biobased products 16.1.4.1 Bioherbicide 16.1.4.2 Biofertilizer 16.2 Toxicological aspects of the biobased products and its production chain 16.2.1 Upstream processes 16.2.1.1 Raw material 16.2.2 Midstream processes 16.2.2.1 Pretreatment and compound handling processes 16.2.2.2 Genetic engineering 16.2.3 Downstream processes 16.3 Bioproducts toxicity assessment: approaches and results 16.5 The trends and challenges of toxicological assessment References 17 Advance technology for biostimulants in agriculture 17.1 Introduction 17.2 Different advanced technology for biostimulants 17.3 Nano biostimulant 17.3.1 Nanosilver 17.4 Mechanism of nanosilver particle 17.4.1 Agri-nano 17.5 Mechanism of agri-nanoproduct 17.6 Plant biostimulant 17.6.1 Amino acids 17.6.2 Sea weed 17.6.3 Chitosan 17.6.3.1 Mechanism of action 17.6.4 Protein hydrolysates 17.6.4.1 Characterization and chemical classification of protein hydrolysates 17.6.4.2 Mechanism of action 17.6.5 Microalgae 17.6.5.1 Chemical composition of microalgal biostimulants 17.6.5.2 Method of application of microalgal biostimulants 17.7 Humic substances 17.7.1 Mechanism of action of humic substances 17.7.2 Role of humic substances as biostimulant in plant 17.7.3 Method of application of humic substances 17.7.3.1 Soil application (liquid-status) 17.7.3.2 Soil application (solid-status) 17.7.3.3 Foliar application 17.7.3.4 Fertigation 17.8 Conclusion References 18 Chitin and chitosan as elicitors in sustainable production of medicinal crops 18.1 Introduction 18.2 Immune responses of medicinal plants 18.3 Inducing resistance in medicinal plants 18.3.1 Synthetic inducers 18.3.2 Microbial elicitors 18.4 Chitin and chitosan: the fungal elicitors 18.5 Mechanism of action of chitin and chitosan in medicinal plants 18.6 Applications of chitosan in enhanced production of therapeutics 18.7 Conclusion Acknowledgements References 19 Deciphering the role of phytohormones in the regulation of arbuscular mycorrhizal fungal symbiosis and mechanisms involved 19.1 Introduction 19.2 Phytohormones as biostimulants in arbuscular mycorrhizal fungi development 19.3 Strigolactones 19.4 Gibberellins 19.5 Auxins 19.6 Abscisic acid 19.7 Ethylene 19.8 Cytokinins 19.9 Brassinosteroids 19.10 Jasmonic acid 19.11 Salicylic acid 19.12 Conclusions and future direction of research Acknowledgments References 20 Biopreservation: an alluring method to safeguard food from spoilage 20.1 Biopreservation 20.2 Chemical preservatives versus biopreservatives 20.3 Advantages of biopreservatives 20.4 Lactic acid bacteria and its potential use in food safety 20.5 Bacteriocin 20.6 Lab bacteriocins 20.6.1 Classification 20.6.2 Factors inhibiting bacteriocin production 20.6.3 Factors affecting bacteriocin activity in food 20.7 Bacteriocins of various Gram-positive bacteria 20.8 Bacillus as biopreservative 20.9 Applications of bacteriocin-producing lactic acid bacteria in food 20.10 Bacteriophages and their antibacterial life cycle 20.10.1 Current bacteriophage-based food applications 20.11 Endolysins: structure and mode of action 20.11.1 Endolysins in food applications 20.12 Limitations of biopreservation process 20.13 Hurdle technology 20.14 Applications of lactic acid bacteria bacteriocins in hurdle technology 20.15 Pulsed electric field 20.15.1 Limitations 20.16 Nanotechnology 20.17 Future prospects 20.18 Conclusion References 21 Sustainable agriculture through improved on farm processing techniques and value-added organic food products 21.1 Sustainable agriculture 21.2 Drivers of sustainability 21.3 Constraints and consideration of agricultural sustainability 21.4 Traditional on-farm processing technologies and challenges 21.5 Some selected value-added organic food products and their market status, prospects, and challenges 21.5.1 Melon seed (Citrullus lanatus) 21.5.1.1 Introduction 21.5.1.2 Traditional on-farm technologies 21.5.1.3 Processing 21.5.1.4 Challenges 21.5.1.5 Prospects 21.5.1.6 Way forward and recommendations 21.5.1.7 Publicity 21.5.1.8 Rural development 21.5.1.9 Malnutrition 21.5.2 Groundnut (Arachis hypogaea) 21.5.2.1 Introduction 21.5.2.2 Traditional on-farm technologies 21.5.2.3 Processing 21.5.2.4 Challenges 21.5.2.5 Rainfall variability and drought 21.5.2.6 Aflatoxin 21.5.2.7 Poor soil fertility 21.5.2.8 Biotic and abiotic constraints 21.5.3 Input supply 21.5.3.1 Prospects 21.5.3.1.1 Groundnut value chain 21.5.3.1.2 Technological 21.5.3.2 Way forward and recommendations 21.5.4 Maize (Zea mays L.) 21.5.4.1 Introduction 21.5.4.2 Traditional farm technology 21.5.4.2.1 Land selection 21.5.4.2.2 Soil requirements 21.5.4.2.3 Climatic requirements 21.5.4.2.4 Water 21.5.4.2.5 Planting date 21.5.4.2.6 Weed control 21.5.4.3 Land clearing and yield preparation 21.5.4.3.1 Planting time 21.5.4.3.2 Plant population 21.5.4.3.3 Plant nutrient and fertilizer applications 21.5.4.4 Disease control 21.5.4.4.1 Insect/pest control 21.5.4.4.2 Processing 21.5.4.5 Market status of maize 21.5.4.6 Challenges 21.5.4.7 Prospects 21.5.5 Date palm fruit (Phoenix dactylifera) 21.5.5.1 Introduction 21.5.5.2 Traditional on farm technologies 21.5.5.2.1 Site selection 21.5.5.2.2 Planting 21.5.5.2.3 Fertilizer application 21.5.5.3 Manure application, time, and dosage; soil and plant-dependent 21.5.5.3.1 Harvesting 21.5.5.3.2 Pests and disease management 21.5.5.3.3 Processing 21.5.5.4 Market status 21.5.5.5 Prospects 21.5.5.6 Recommendation 21.5.6 Spinach (Spinacia oleracea) 21.5.6.1 Introduction 21.5.6.2 Traditional on-farm technologies 21.5.6.3 Site selection 21.5.6.4 Processing 21.5.6.5 Constraints 21.5.7 Recommendations 21.6 Benefits of organic agriculture 21.7 Conclusion References Index Back Cover