دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Kai Zuber
سری: Series in High Energy Physics, Cosmology and Gravitation
ISBN (شابک) : 1138718890, 9781138718890
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 466
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Neutrino Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک نوترینو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
وقتی متن پیشگام کای زوبر در مورد نوترینوها در سال 2003 منتشر شد، نویسنده به درستی پیشبینی کرد که این میدان در آینده نزدیک شاهد رشد فوقالعادهای خواهد بود. در آن کتاب، پروفسور زوبر یک بررسی مستقل و جامع از نوترینوها ارائه کرد که تاریخچه تحقیقات و تئوری آنها و همچنین کاربرد آنها در فیزیک ذرات، اخترفیزیک، فیزیک هستهای و دامنه وسیع کیهانشناسی را پوشش میدهد. اما اکنون برای اینکه واقعاً جامع و دقیق باشد، مرجع اصلی این رشته باید بازنگری و گسترش یابد تا آخرین تحقیقات، نتیجهگیریها و پیامدها را در بر گیرد.
بر اساس نیاز، تجدید نظر شده تا با تحقیقات امروزی برابری کند، < قوی>فیزیک نوترینو، ویرایش سوم به بررسی مقاطع نوترینو، اندازه گیری جرم، واپاشی مضاعف بتا، نوترینوهای خورشیدی، نوترینوهای ابرنواخترها، و نوترینوهای پرانرژی، و همچنین نتایج تجربی کاملاً جدید در زمینه تئوری می پردازد. مدل ها.
نوشته شده تا برای دانشجویان فارغ التحصیل و خوانندگان با پیشینههای مختلف قابل دسترسی باشد، این نسخه، مانند نسخه اول، هم مقدمهای بر این رشته و هم اطلاعات مورد نیاز کسانی را ارائه میکند که به دنبال مشارکت خود در آن هستند. . و مانند ویرایش دوم، اشتهای محقق را برمی انگیزد، و فراتر از قطعیت است و سوالاتی را مطرح می کند که هنوز به پاسخ نیاز دارند.
ویژگی ها
When Kai Zuber’s pioneering text on neutrinos was published in 2003, the author correctly predicted that the field would see tremendous growth in the immediate future. In that book, Professor Zuber provided a comprehensive self-contained examination of neutrinos, covering their research history and theory, as well as their application to particle physics, astrophysics, nuclear physics, and the broad reach of cosmology; but now to be truly comprehensive and accurate, the field’s seminal reference needs to be revised and expanded to include the latest research, conclusions, and implications.
Revised as needed to be equal to the research of today, Neutrino Physics, Third Edition delves into neutrino cross-sections, mass measurements, double beta decay, solar neutrinos, neutrinos from supernovae, and high-energy neutrinos, as well as entirely new experimental results in the context of theoretical models.
Written to be accessible to graduate students and readers from diverse backgrounds, this edition, like the first, provides both an introduction to the field as well as the information needed by those looking to make their own contributions to it. And like the second edition, it whets the researcher’s appetite, going beyond certainty to pose those questions that still need answers.
Features
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface to the First Edition Preface to the Second Edition Preface to the Third Edition Notation 1: Important Historical Experiments 1.1 The Birth of the Neutrino 1.2 Nuclear Recoil Experiment by Rodeback and Allen 1.3 Discovery of the Neutrino by Cowan and Reines 1.4 Difference between ve and ve and solar neutrino detection 1.5 Discovery of Parity Violation in Weak Interactions 1.6 Direct Measurement of the Helicity of the Neutrino 1.7 Experimental Proof That Vμ is Different from Ve 1.8 Discovery of Weak Neutral Currents 1.9 Discovery of the Weak W± and Z0 Gauge Bosons 1.10 Observation of Neutrinos from SN 1987A 1.11 Number of Neutrino Flavours from the Width of the Z0 1.12 Further Milestones in the Last 20 Years 2: Properties of Neutrinos 2.1 Helicity and Chirality 2.2 Charge Conjugation 2.3 Parity Transformation 2.4 Dirac and Majorana Mass Terms 2.4.1 Generalization to n Flavours 2.5 Lepton Number 2.5.1 Experimental Status of Lepton Flavour and Number Violation 3: The Standard Model of Particle Physics 3.1 The V–A Theory of the Weak Interaction 3.2 Gauge Theories 3.2.1 The Gauge Principle 3.2.2 Global Symmetries 3.2.3 Local (=Gauge) Symmetries 3.2.4 Non-Abelian Gauge Theories (= Yang–Mills Theories) 3.3 The Glashow–Weinberg–Salam Model 3.3.1 Spontaneous Symmetry Breaking and the Higgs Mechanism 3.3.2 The CKM Mass Matrix 3.3.3 CP Violation 3.3.4 CPT and T Violation 3.4 Experimental Determination of Fundamental Parameters 3.4.1 Measurement of the Fermi Constant GF 3.4.2 Neutrino–Electron Scattering and the Coupling Constants gV and gA 3.4.2.1 Theoretical considerations 3.4.2.2 Vμe-Scattering 3.4.2.3 Vee and Vee-Scattering 3.4.2.4 Neutrino Tridents 3.4.3 Measurement of the Weinberg Angle 3.4.4 Measurement of the Gauge Boson Masses mW and mZ 3.4.5 The Discovery of the Higgs Boson 4: Neutrinos as a Probe of Nuclear Structure 4.1 Neutrino Beams 4.1.1 Conventional Beams 4.1.1.1 Narrow-Band Beams 4.1.1.2 Wide-Band Beams 4.1.2 VT Beams 4.1.3 Off-Axis Superbeams 4.1.4 Alternative Neutrino Beams 4.2 Neutrino Detectors 4.2.1 OPERA 4.2.2 NOVA 4.2.3 T2K 4.2.4 DUNE 4.3 Total Cross-Section for Neutrino–Nucleon Scattering 4.4 Coherent Elastic Neutrino–Nucleus Scattering 4.5 Quasi-Elastic Neutrino–Nucleon Scattering 4.5.1 Quasi-Elastic CC Reactions 4.5.2 Quasi-Elastic NC Reactions 4.6 Kinematics of Deep Inelastic Scattering 4.7 Coherent, Resonant and Diffractive Production 4.8 Structure Function of Nucleons 4.9 the Quark–Parton Model, Parton Distribution Functions 4.9.1 Deep Inelastic Neutrino Proton Scattering 4.9.1.1 QCD effects 4.10 y Distributions and Quark Content from Total Cross-Sections 4.10.1 Sum Rules 4.11 Charm Physics 4.12 Neutral Current Reactions 4.13 Neutrino Cross-Section on Nuclei 5: Neutrino Masses and Physics Beyond the Standard Model 5.1 Running Coupling Constants 5.2 The Minimal SU(5) Model 5.2.1 Proton Decay 5.3 The SO(10) Model 5.3.1 Left–Right Symmetric Models 5.4 Supersymmetry 5.4.1 The Minimal Supersymmetric Standard Model 5.4.2 R-Parity 5.4.3 Experimental Search for Supersymmetry 5.4.3.1 SUSY Signatures at High Energy Colliders 5.4.3.2 SUSY GUTs and Proton Decay 5.5 Neutrino Masses 5.5.1 Neutrino Masses in the Electroweak Theory 5.5.2 Neutrino Masses in the Minimal SU(5) Model 5.5.3 Neutrino Masses in the SO(10) Model and the Seesaw Mechanism 5.5.3.1 Almost Degenerated Neutrino Masses 5.5.4 Neutrino Masses in SUSY and Beyond 5.6 Neutrino Mixing 6: Direct Neutrino Mass Searches 6.1 Fundamentals of β-Decay 6.1.1 Matrix Elements 6.1.2 Phase Space Calculation 6.1.3 Kurie Plot and ft-Values 6.2 Searches for mve 6.2.1 General Considerations 6.2.2 Searches Using Spectrometers 6.2.2.1 The KATRIN experiment 6.2.2.2 Project 8 6.2.3 Alternative Searches 6.2.4 Kinks in β-Decay 6.3 Searches For mve 6.4 mvµ Determination from Pion Decay 6.5 Mass of the VT From Tau Decay 6.6 Electromagnetic Properties of Neutrinos 6.6.1 Electric Dipole Moments 6.6.2 Magnetic Dipole Moments 6.7 Neutrino Decay 6.7.1 Radiative Decay VH → VL + ϒ 6.7.2 The Decay VH → VL + e+ + e- 6.7.3 The Decay VH → VL + X 6.8 Heavy Neutrinos 7: Double Beta Decay 7.1 Introduction 7.2 Decay Rates 7.2.1 The 2V ββ Decay Rates 7.2.2 The 0V ββ Decay Rates 7.3 Nuclear Structure Effects on Matrix Elements 7.4 Experiments 7.4.1 Practical Considerations in Low-level Counting 7.4.2 Direct Counting Experiments 7.4.2.1 Semiconductor Experiments 7.4.2.2 Scintillator Experiments 7.4.2.3 Cryogenic Detectors 7.4.2.4 Ionization Experiments 7.4.3 Geochemical Experiments 7.4.4 Radiochemical Experiments 7.5 Interpretation of the Obtained Results 7.5.1 Effects of MeV Neutrinos 7.5.2 Transitions to Excited States 7.5.3 Majoron Accompanied Double β-decay 7.5.4 Decay Rates for SUSY-Induced 0V ββ Decay 7.6 Positron Decay and Electron Capture Decay Modes 7.7 CP Phases and Double Beta Decay 7.8 Generalization to Three Flavours 7.8.1 General Considerations 7.8.1.1 Muon–Positron Conversion on Nuclei 7.8.1.2 Processes Investigating mµµ 7.8.1.3 Limits on mTT from CC events at HERA 8: Neutrino Oscillations 8.1 General Formalism 8.2 CP and T Violation in Neutrino Oscillations 8.3 Oscillations with Two Neutrino Flavours 8.4 The Case for Three Flavours 8.5 Experimental Considerations 8.6 Nuclear Reactor Experiments 8.6.1 Experimental Status 8.6.1.1 KamLAND–Measurement of θ12 8.6.1.2 Double Chooz, RENO and Daya Bay–Measurement of θ13 8.6.2 Geoneutrinos 8.7 Accelerator-Based Oscillation Experiments 8.8 Neutrino Oscillations in Matter 8.9 Future Activities – Determination of the PMNS Matrix Elements 8.10 New Neutrinos Beams 8.10.1 Off-Axis Superbeams 8.10.2 Muon Storage Rings – Neutrino Factories 9: Atmospheric Neutrinos 9.1 Cosmic Rays 9.2 Interactions Within the Atmosphere 9.3 Experimental Status 9.3.1 Super-Kamiokande 9.3.1.1 The Vµ/Ve Ratio 9.3.1.2 Zenith-Angle Distributions 9.3.1.3 Oscillation Analysis 9.4 Accelerator-Based Searches – Long-Baseline Experiments 9.4.1 K2K 9.4.2 MINOS 9.4.3 CERN–Gran Sasso 9.5 Future Experimental Plans and Ideas 9.5.1 INO-ICAL 9.5.2 Hyper-Kamiokande 9.5.3 THEIA 9.5.4 AQUA-RICH 10: Solar Neutrinos 10.1 The Standard Solar Model 10.1.1 Energy Production Processes in the Sun 10.1.2 Reaction Rates 10.1.3 The Solar Neutrino Spectrum 10.1.3.1 Standard Solar Models 10.1.3.2 Diffusion 10.1.3.3 Initial Composition 10.1.3.4 Opacity and Equation of State 10.1.3.5 Predicted Neutrino Fluxes 10.2 Solar Neutrino Experiments 10.2.1 The Chlorine Experiment 10.2.2 Super-Kamiokande 10.2.3 The Gallium Experiments 10.2.3.1 GALLEX 10.2.3.2 GNO 10.2.3.3 SAGE 10.2.4 The Sudbury Neutrino Observatory (SNO) 10.2.5 The Borexino Experiment 10.3 Theoretical Solutions–Matter Effects 10.3.1 Neutrino Oscillations as a Solution to the Solar Neutrino Problem 10.3.2 Neutrino Oscillations in Matter and the MSW Effect 10.3.2.1 Constant Density of Electrons 10.3.2.2 Variable Electron Density 10.3.3 Experimental Signatures and Results 10.4 Future Potential Experiments 10.4.1 Real-Time Measurement of PP Neutrinos Using Coincidence Techniques 11: Neutrinos from Supernovae 11.1 Supernovae 11.1.1 The Evolution of Massive Stars 11.1.2 Energy Loss of Massive Stars Due to Neutrino Emission 11.1.3 The Actual Collapse Phase 11.2 Neutrino Emission in Supernova Explosions 11.2.1 The Classical Prediction 11.2.2 Neutrino Oscillations and Supernova Signals 11.2.2.1 Effects on the Prompt Ve Burst 11.2.2.2 Cooling Phase Neutrinos 11.2.2.3 Production of R-Process Isotopes 11.2.2.4 Neutrino Mass Hierarchies from Supernova Signals 11.3 Detection Methods for Supernova Neutrinos 11.4 Supernova 1987A 11.4.1 Characteristics of Supernova 1987A 11.4.1.1 Properties of the Progenitor Star and the Event 11.4.1.2 ϒ-Radiation 11.4.1.3 Distance 11.4.1.4 Summary 11.4.2 Neutrinos from SN 1987A 11.4.2.1 Possible Anomalies 11.4.3 Neutrino Properties from SN 1987A 11.4.3.1 Lifetime of the Neutrino 11.4.3.2 Mass of the Neutrino 11.4.3.3 Magnetic Moment and Electric Charge 11.4.3.4 Conclusion 11.5 Supernova Rates and Future Experiments 11.5.1 Diffuse Supernova Neutrino Background 12: Ultra-High Energetic Cosmic Neutrinos 12.1 Sources of High-Energy Cosmic Neutrinos 12.1.1 Neutrinos Produced in Acceleration Processes 12.1.2 Neutrinos Produced in Annihilation or Decay of Heavy Particles 12.1.3 Event Rates 12.1.4 Neutrinos from Active Galactic Nuclei 12.1.5 Neutrinos from Gamma Ray Bursters 12.1.6 Cross-Sections 12.2 Detection 12.2.1 Water Cherenkov Detectors 12.2.1.1 Baikal NT-200 12.2.1.2 ANTARES 12.2.2 Ice Cherenkov Detectors—IceCube 12.2.3 Multi-Messenger Approaches 12.2.4 Gravitational Waves 12.2.5 Alternative Techniques—Acoustic and Radio Detection 12.2.6 Horizontal Air Showers—the AUGER Experiment 13: Neutrinos in Cosmology 13.1 Cosmological Models 13.1.1 The Cosmological Constant Ʌ 13.1.2 The Inflationary Phase 13.1.3 The Density in the Universe 13.2 The Evolution of the Universe 13.2.1 The Standard Model of Cosmology 13.3 The Cosmic Microwave Background 13.3.1 Spectrum and Temperature 13.3.2 Measurement of the Spectral Form and Temperature of the CMB 13.3.3 Anisotropies in the 3 K Radiation 13.3.3.1 Measurement of the Anisotropy 13.3.3.2 Anisotropies on Small Scales 13.4 Neutrinos as Dark Matter 13.5 Candidates for Dark Matter 13.5.1 Non-Baryonic Dark Matter 13.5.1.1 Hotdarkmatter, Light neutrinos 13.5.1.2 Cold Dark Matter, Heavy Particles, WIMPs 13.5.2 Direct and Indirect Experiments 13.5.2.1 Annihilation Inside the Sun or Earth 13.6 Neutrinos and Large-Scale Structure 13.7 The Cosmic Neutrino Background 13.8 Primordial Nucleosynthesis 13.8.1 The Process of Nucleosynthesis 13.8.2 The Relativistic Degrees of Freedom geff and the Number of Neutrino Flavours 13.9 Baryogenesis Via Leptogenesis 13.9.1 Leptogenesis 14: Summary and Outlook References Index