دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: James Loy
سری:
ISBN (شابک) : 1789138906, 9781789138900
ناشر: Packt Publishing
سال نشر: 2019
تعداد صفحات: 301
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Neural Network Projects with Python: The ultimate guide to using Python to explore the true power of neural networks through six projects به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پروژه های شبکه عصبی با پایتون: راهنمای نهایی استفاده از پایتون برای کشف قدرت واقعی شبکه های عصبی از طریق شش پروژه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Page Copyright and Credits Dedication About Packt Contributors Table of Contents Preface Chapter 1: Machine Learning and Neural Networks 101 What is machine learning? Machine learning algorithms The machine learning workflow Setting up your computer for machine learning Neural networks Why neural networks? The basic architecture of neural networks Training a neural network from scratch in Python Feedforward The loss function Backpropagation Putting it all together Deep learning and neural networks pandas – a powerful data analysis toolkit in Python pandas DataFrames Data visualization in pandas Data preprocessing in pandas Encoding categorical variables Imputing missing values Using pandas in neural network projects TensorFlow and Keras – open source deep learning libraries The fundamental building blocks in Keras Layers – the atom of neural networks in Keras Models – a collection of layers Loss function – error metric for neural network training Optimizers – training algorithm for neural networks Creating neural networks in Keras Other Python libraries Summary Chapter 2: Predicting Diabetes with Multilayer Perceptrons Technical requirements Diabetes – understanding the problem AI in healthcare Automated diagnosis The diabetes mellitus dataset Exploratory data analysis Data preprocessing Handling missing values Data standardization Splitting the data into training, testing, and validation sets MLPs Model architecture Input layer Hidden layers Activation functions ReLU Sigmoid activation function Model building in Python using Keras Model building Model compilation Model training Results analysis Testing accuracy Confusion matrix ROC curve Further improvements Summary Questions Chapter 3: Predicting Taxi Fares with Deep Feedforward Networks Technical requirements Predicting taxi fares in New York City The NYC taxi fares dataset Exploratory data analysis Visualizing geolocation data Ridership by day and hour Data preprocessing Handling missing values and data anomalies Feature engineering Temporal features Geolocation features Feature scaling Deep feedforward networks Model architecture Loss functions for regression problems Model building in Python using Keras Results analysis Putting it all together Summary Questions Chapter 4: Cats Versus Dogs - Image Classification Using CNNs Technical requirements Computer vision and object recognition Types of object recognition tasks Digital images as neural network input Building blocks of CNNs Filtering and convolution Max pooling Basic architecture of CNNs A review of modern CNNs LeNet (1998) AlexNet (2012) VGG16 (2014) Inception (2014) ResNet (2015) Where we stand today The cats and dogs dataset Managing image data for Keras Image augmentation Model building Building a simple CNN Leveraging on pre-trained models using transfer learning Results analysis Summary Questions Chapter 5: Removing Noise from Images Using Autoencoders Technical requirements What are autoencoders? Latent representation Autoencoders for data compression The MNIST handwritten digits dataset Building a simple autoencoder Building autoencoders in Keras Effect of hidden layer size on autoencoder performance Denoising autoencoders Deep convolutional denoising autoencoder Denoising documents with autoencoders Basic convolutional autoencoder Deep convolutional autoencoder Summary Questions Chapter 6: Sentiment Analysis of Movie Reviews Using LSTM Technical requirements Sequential problems in machine learning NLP and sentiment analysis Why sentiment analysis is difficult RNN What\'s inside an RNN? Long- and short-term dependencies in RNNs The vanishing gradient problem The LSTM network LSTMs – the intuition What\'s inside an LSTM network? Forget gate Input gate Output gate Making sense of this The IMDb movie reviews dataset Representing words as vectors One-hot encoding Word embeddings Model architecture Input Word embedding layer LSTM layer Dense layer Output Model building in Keras Importing data Zero padding Word embedding and LSTM layers Compiling and training models Analyzing the results Confusion matrix Putting it all together Summary Questions Chapter 7: Implementing a Facial Recognition System with Neural Networks Technical requirements Facial recognition systems Breaking down the face recognition problem Face detection Face detection in Python Face recognition Requirements of face recognition systems Speed Scalability High accuracy with small data One-shot learning Naive one-shot prediction – Euclidean distance between two vectors Siamese neural networks Contrastive loss The faces dataset Creating a Siamese neural network in Keras Model training in Keras Analyzing the results Consolidating our code Creating a real-time face recognition program The onboarding process Face recognition process Future work Summary Questions Chapter 8: What\'s Next? Putting it all together Machine Learning and Neural Networks 101 Predicting Diabetes with Multilayer Perceptrons Predicting Taxi Fares with Deep Feedforward Nets Cats Versus Dogs – Image Classification Using CNNs Removing Noise from Images Using Autoencoders Sentiment Analysis of Movie Reviews Using LSTM Implementing a Facial Recognition System with Neural Networks Cutting edge advancements in neural networks Generative adversarial networks Deep reinforcement learning Limitations of neural networks The future of artificial intelligence and machine learning Artificial general intelligence Automated machine learning Keeping up with machine learning Books Scientific journals Practicing on real-world datasets Favorite machine learning tools Summary Other Books You May Enjoy Index