ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanofluids: Mathematical, Numerical, and Experimental Analysis

دانلود کتاب نانو سیالات: تجزیه و تحلیل ریاضی ، عددی و تجربی

Nanofluids: Mathematical, Numerical, and Experimental Analysis

مشخصات کتاب

Nanofluids: Mathematical, Numerical, and Experimental Analysis

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0081029330, 9780081029336 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 368 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Nanofluids: Mathematical, Numerical, and Experimental Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانو سیالات: تجزیه و تحلیل ریاضی ، عددی و تجربی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانو سیالات: تجزیه و تحلیل ریاضی ، عددی و تجربی



نانو سیالات: تجزیه و تحلیل ریاضی، عددی و تجربییک درمان ترکیبی از جنبه‌های عددی و تجربی این مبحث حیاتی را ارائه می‌دهد. روش‌های ریاضی مانند روش باقیمانده وزنی و تکنیک‌های اغتشاش، و همچنین روش‌های عددی مانند المان محدود و شبکه بولتزمن، همراه با روش‌های تجربی در آنالیز نانوسیال مورد بررسی قرار گرفته‌اند. اثرات میدان مغناطیسی، میدان الکتریکی و تابش خورشیدی بر خواص نوری و سنتز جریان نانوسیال نیز مورد بررسی و بحث قرار گرفته است. این کتاب همچنین به عنوان بررسی جامع پیشرفت های اخیر در تجزیه و تحلیل نانوسیالات و کاربرد آن در علوم مختلف مهندسی عمل می کند.

این کتاب برای همه خوانندگان در صنعت یا دانشگاه و هر کسی که به دلایل طراحی تئوری یا تجربی به نانوسیالات علاقه دارد ایده آل است.


توضیحاتی درمورد کتاب به خارجی

Nanofluids: Mathematical, Numerical and Experimental Analysis provides a combined treatment of the numerical and experimental aspects of this crucial topic. Mathematical methods such as the weighted residual method and perturbation techniques, as well as numerical methods such as Finite Element and Lattice-Boltzmann are addressed, along with experimental methods in nanofluid analysis. The effects of magnetic field, electric field and solar radiation on the optical properties and synthesis of nanofluid flow are examined and discussed as well. This book also functions as a comprehensive review of recent progress in nanofluids analysis and its application in different engineering sciences.

This book is ideal for all readers in industry or academia, along with anyone interested in nanofluids for theoretical or experimental design reasons.



فهرست مطالب

Cover
Nanofluids: Mathematical, Numerical, and
Experimental Analysis
Copyright
Dedication
Contents
Preface
1 Introduction to nanofluids
	1.1 History of nanofluids
		1.1.1 Preparing nanofluids
		1.1.2 Synthesis of nanofluids
	1.2 Structures and different types
		1.2.1 Case 1: Single phase: different shapes of nanoparticles in a wavy-wall square cavity filled with power-law non-Newton...
		1.2.2 Case 2: Two-phase nanofluid thermal analysis over a stretching infinite solar plate
	1.3 Nanofluid properties
		1.3.1 Case 1: A modified multisphere Brownian model to predict the thermal conductivity of colloid suspension of wide volum...
			1.3.1.1 Models for the thermal conductivity of colloidal suspensions
			1.3.1.2 Multisphere Brownian model
			1.3.1.3 Modification of the multisphere Brownian model
			1.3.1.4 Establishment of database with various experimental results
			1.3.1.5 Thermal conductivity measured in our experiments
			1.3.1.6 Determining the parameters for the modified model
			1.3.1.7 Dependency of the n values on the volume fractions
	1.4 Benefits and applications
	1.5 Other forces on nanoparticles in base fluid
		1.5.1 Case 1: Natural convection heat transfer in an NF-filled cavity with double sinusoidal wavy walls
		1.5.2 Case 2: The effects of nanoparticle aggregation on convection heat transfer investigated using a combined NDDM and DP...
			1.5.2.1 Nanoparticle diameter distribution model
				1.5.2.1.1 Discrete phase model
			1.5.2.2 Problem description in second case and its solution
	References
2 Mathematical analysis of nanofluids
	2.1 Mathematical modeling of nanofluids properties
	2.2 Weighted residual method for nanofluid modeling
		2.2.1 Case 1: Heat transfer and nanofluid flow through circular concentric heat pipes
		2.2.2 Case 2.A: Condensation of nanofluids
		2.2.3 Case 2.B: Magnetohydrodynamic flow over porous medium
			2.2.3.1 Solution of condensation of nanofluids
			2.2.3.2 Solution of magnetohydrodynamic flow between parallel plates
		2.2.4 Case 3: Peristaltic nanofluid flow in a divergent asymmetric wavy-wall channel
	2.3 Differential transformation method for nanofluid modeling
		2.3.1 Case 1: Thermal boundary-layer analysis of nanofluid flow over a stretching flat plate
		2.3.2 Case 2: Peristaltic flow of nanofluids in a sinusoidal wall channel
		2.3.3 Case 3: Inclined rotating disk
	2.4 Other analytical/mathematical modeling
		2.4.1 Case 1: Nanofluids over a cylindrical tube under the magnetic field effect
		2.4.2 Case 2: Nanofluid passing over a porous moving semiinfinite flat plate
		2.4.3 Case 3: Two-phase nanofluid flow over a stretching infinite solar plate
	References
3 Numerical analysis of nanofluids
	3.1 Finite element method in nanofluid
		3.1.1 Case 1: Hot tubes in a wavy porous channel and nanofluid under variable magnetic field
		3.1.2 Case 2: Circular-wavy cavity filled by nanofluid
		3.1.3 Case 3: Wavy porous cavity filled with nanofluid in the presence of solar radiation
	3.2 Finite volume method in nanofluid
		3.2.1 Case 1: Nanofluid natural convection for an F-shaped cavity under magnetic field effects
		3.2.2 Case 2: Different nanofluid flow through venturi
	3.3 Lattice-Boltzmann method in nanofluid
		3.3.1 Two-phase lattice Boltzmann method
		3.3.2 Population balance equation
		3.3.3 Coupling population balance equations and the lattice Boltzmann method method
		3.3.4 Case 1: Dynamic nanoparticle aggregation for a flowing colloidal suspension
	3.4 Finite difference method in nanofluid
		3.4.1 Case 1: Alumina–water nanofluid in an inclined direct absorption solar collector
	3.5 Runge–Kutta–Fehlberg numerical method
		3.5.1 Case 1: Nanofluid analysis in a porous medium under magnetohydrodynamic effect
		3.5.2 Case 2: Ferrofluid flow influenced by rotating disk
		3.5.3 Case 3: Solar radiation effect on the magnetohydrodynamic nanofluid flow over a stretching sheet
	References
4 Experimental analysis of nanofluids
	4.1 Brownian motion of nonspherical particle
		4.1.1 Model validation
		4.1.2 Experimental thermal conductivity of nanocube nanofluid
	4.2 Different properties of nanofluids
		4.2.1 Viscosity
		4.2.2 Thermal conductivity
		4.2.3 Optical properties
			4.2.3.1 Experimental properties attained over aggregation radii
		4.2.4 Surface tension
	4.3 Optical properties of nanofluids
		4.3.1 Aggregation of nanofluid
			4.3.1.1 Monte Carlo simulation
			4.3.1.2 Population balance equation
			4.3.1.3 Brownian dynamic simulation
		4.3.2 Optical properties of nanofluids
			4.3.2.1 Rayleigh scattering theory
			4.3.2.2 Mie scattering theory
			4.3.2.3 Maxwell–Garnett effective medium theory
		4.3.3 Optical models considering aggregation
			4.3.3.1 Generalized multiparticle Mie solution method
			4.3.3.2 Finite difference time domain method
		4.3.4 Experimental research on optical properties
	4.4 Experimental correlations of nanofluid properties
		4.4.1 Preparation of alumina nanofluids with controlled particle aggregation properties
		4.4.2 Measurement of the absorption coefficient of the nanofluid
		4.4.3 Measurement of particle size distribution
		4.4.4 Experimental result of absorption coefficients
		4.4.5 Experimental result of particle size distributions
		4.4.6 Predicted results by theoretical model
	4.5 Experimental application of nanofluids
		4.5.1 Magnetic electrolyte nanofluids for a hybrid photovoltaic/thermal solar collector application
			4.5.1.1 Application of electrolyte nanofluid in photovoltaic/thermal system
		4.5.2 Highly dispersed nanofluid in a concentrating photovoltaic/thermal system
			4.5.2.1 Optical properties and thermal conductivity of the nanofluids
			4.5.2.2 Application of optimized nanofluids in a model photovoltaic/thermal system
	References
	Further reading
5 Nanofluid analysis in different media
	5.1 Nanofluids in porous media
		5.1.1 Case 1: Lid-driven T-shaped porous cavity
		5.1.2 Case 2: Nanofluid in porous-filled absorber tube of solar collector
		5.1.3 Case 3: Porous half-annulus enclosure filled by Cu–water nanofluid under the uniform magnetic field
	5.2 Nanofluids in magnetic field (magneto hydrodynamics–ferrofluid)
		5.2.1 Case 1: Variable magnetic field effect on a half-annulus cavity filled by nanofluid
		5.2.2 Case 2: Nanofluid flow over a porous plate under the variable magnetic field effect
		5.2.3 Case 3: Ferrofluids under external magnetic field
			5.2.3.1 Measurement setup
	5.3 Nanofluids under thermal radiation
		5.3.1 Case 1: Polydisperse colloidal particles in the presence of thermal gradient
		5.3.2 Case 2: Carbon nanotube-water analysis between rotating disks under the thermal radiation conditions
		5.3.3 Case 3: Ethylene glycol (C2H6O2) carbon nanotubes in rotating stretching channel with nonlinear thermal radiation
	References
	Further reading
6 Nanofluid analysis in different applications
	6.1 Nanofluids for cooling and heating
		6.1.1 Case 1: Design of microchannel heat sink with wavy and straight wall
		6.1.2 Case 2: Nanofluids in the heating process of an heating, ventilation, and air conditioning system model
	6.2 Nanofluids in nuclear engineering
		6.2.1 Case 1: Turbulent nanofluids flow in pressured water reactor
		6.2.2 Case 2: Nanoparticles around the heated cylinder in a wavy-wall enclosure
	6.3 Nanofluids in renewable energies
		6.3.1 Case 1: Nanofluid-based Concentrating Parabolic Solar Collector
		6.3.2 Case 2: Wavy direct absorption solar collector filled with different nanofluids
	6.4 Nanofluid in industry
		6.4.1 Case 1: Condensation of nanofluids
		6.4.2 Case 2: Heat transfer of nanofluids between parallel plates
	6.5 Nanofluid analysis in other applications
		6.5.1 Case 1: Hybrid nanoparticles (Cu–Al2O3) over a porous medium
			6.5.1.1 Flow analysis
			6.5.1.2 Heat transfer analysis
		6.5.2 Case 2: Engine radiator heat recovery using different nanofluids
	References
Index
Back Cover




نظرات کاربران