دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Kaushik Pal (editor). Fernando Gomes (editor)
سری: Micro and Nano Technologies
ISBN (شابک) : 0128207027, 9780128207024
ناشر: Elsevier
سال نشر: 2020
تعداد صفحات: 452
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Nanofabrication for Smart Nanosensor Applications (Micro and Nano Technologies) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ساخت نانو برای کاربردهای نانوحسگر هوشمند (فناوری های میکرو و نانو) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نانوساخت برای کاربردهای نانوحسگر هوشمند به طراحی، ساخت و کاربرد انواع نانومواد برای کاربردهای سنجش میپردازد. به طور خاص، این کتاب به بررسی چگونگی استفاده از تکنیکهای نانوساخت برای ایجاد نانوحسگرهای کارآمدتر میپردازد، کاربردهای اصلی آنها را در زیستپزشکی و علوم زیستمحیطی بررسی میکند، اصول نحوه عملکرد نانوحسگرها را مورد بحث قرار میدهد، تکنیکهای مختلف نانوساخت را بررسی میکند، و در مورد مسایل مسمومیت و ایمنی مرتبط با ایجاد نانوحسگرها با استفاده از کلاسهای نانومواد خاص. این کتاب منبع مهمی برای دانشمندان و مهندسان مواد است که میخواهند برای ایجاد دستگاههای نانوحسگر جدید تصمیمگیری در انتخاب مواد بگیرند.
Nanofabrication for Smart Nanosensor Applications addresses the design, manufacture and applications of a variety of nanomaterials for sensing applications. In particular, the book explores how nanofabrication techniques are used to create more efficient nanosensors, examines their major applications in biomedicine and environmental science, discusses the fundamentals of how nanosensors work, explores different nanofabrication techniques, and comments on toxicity and safety issues relating to the creation of nanosensors using certain nanomaterial classes. This book is an important resource for materials scientists and engineers who want to make materials selection decisions for the creation of new nansensor devices.
Cover Nanofabrication for Smart Nanosensor Applications Copyright Contributors Editors biography Introduction to nanomaterials and nanomanufacturing for nanosensors Nanosensors Types of nanosensors Applications of nanosensors Nanomaterials for nanosensors Properties of nanomaterials for nanosensors Optical properties Electronic properties Magnetic properties Different nanomaterials for nanosensors Carbon nanotube Nanowires Nanoparticles Fullerenes Nanomanufacturing Nanomanufacturing processes Top-down approach Bottom-up approach Molecular self-assembly Nanomanufacturing processes for nanosensors Electron beam lithography Focused ion beam lithography X-ray lithography Conclusions and future directions References Features and complex model of gold nanoparticle fabrication for nanosensor applications Introduction Applications of nanoparticles Growth of gold nanoparticles Mathematical model of gold nanoparticle fabrication Governing equation of gold nanoparticle fabrication Nondimensionalized parameter for governing equations Discretization using finite difference method for gold nanoparticle fabrication problem Linear system equation formulation for gold nanoparticle fabrication Visualization of the mathematical model for gold nanoparticle fabrication Numerical implementation and parallelization for gold nanoparticle fabrication Numerical implementation Alternating group explicit (AGE) Red-Black Gauss-Seidel method (RBGS) Jacobi method (JB) Parallelization of iterative methods for solving one-dimensional mathematical model 1D parallel alternating group explicit method (1D PAGE) 1D parallel Red-Black Gauss-Seidel method (1D PRBGS) 1D parallel Jacobi method (1D PJB) Parallel performance evaluation for fabricating gold nanoparticles Conclusion and recommendation Designing of novel nanosensors for environmental aspects Introduction ABCs of the design strategy for nano-enabled sensors A note on the signal transduction mechanism Electrical signal transduction Optical signal transduction Magnetic signal transduction A few representative nanomaterials and recognition elements Pertinent attributes for the design of nano-enabled sensors for environmental monitoring Exemplary evidence of novel nanosensor design strategies for environmental applications Pathogen detections Detection of heavy metals Unraveling the presence of pesticides Practical snags and future perspectives on nano-enabled sensors for environmental monitoring Conclusion References Applications and success of MIPs in optical-based nanosensors Introduction MIPs synthesis methods Synthesis from monomers in the presence of the template Production of MIPs by phase inversion using polymer precipitation Soft lithography or surface stamping Characterization studies of MIPs Application of MIPs in optical nanosensors Optical sensor Immunoassay/diagnostic applications Cancer diagnosis Applications in detection of pharmaceuticals and drugs Applications in food and environmental sensing Challenges of MIPs for optical sensing systems Critiques and future outlook Recent developments in nanostructured metal oxide-based electrochemical sensors Introduction Types of sensors Chemical sensors Gas sensors Biosensors Electrochemical sensors: Construction, working, and principles Conclusion References Nanosensors and nanobiosensors: Agricultural and food technology aspects Introduction Nanobiosensors General characteristics and categories of nanobiosensors Nanobiosensors in agriculture Detection by nanosensors Nanobiosensors in different food sectors Development of nanosensors in agrofood sector Application of nanosensors in food packaging Conclusions and future directions References Nanosensors in biomedical and environmental applications: Perspectives and prospects Introduction Biosensors Fundamental blocks Types of biosensors Affinity biosensor Metabolism biosensor Catalytic biosensor Electrochemical biosensor Optical biosensor Acoustic biosensor Nanosensors Nanobiosensors Types of nanobiosensors Nanoparticle-based biosensors Acoustic wave nanobiosensor Magnetic nanobiosensor Electrochemical nanobiosensor Nanotube-based biosensors Nanowire-based biosensors Cantilever-based biosensors Graphene-based biosensors Performance parameters of nanobiosensors Selectivity Sensitivity Dose-response curve Dynamic range Multiplex detection Applications of nanobiosensors Diagnostic purpose Blood glucose detection Cancer detection HIV detection Immunoassays Drug discovery Nanostructured sensing electrodes Detection of pathogenic bacteria Environmental monitoring Detection of toxicants Detection of inorganics Nanomedicine Gene therapy Conclusions and future directions Nanosensors for better diagnosis of health Introduction Nanomaterials for biosensors Metal and metal oxide nanomaterials Carbon-based nanomaterials Nanocomposites Other novel nanomaterials Classification of biosensing nanomaterials Electrochemical biosensors Biosensors with field effect transistors Spectroscopic biosensors Latest novel biosensors Applications of nanomaterials in diagnosis of specific diseases Cancer Microbial infection Diabetes Other diseases Current challenges and future perspective Conclusion References Nanomaterial-based gas sensor for environmental science and technology Introduction Types of sensors Gas sensor Biosensors Chemical sensor Materials used in nanosensors Metal sulfides Zinc sulfide Cadmium sulfide Lead sulfide Metal oxides Aluminum oxide Cadmium oxide Copper oxide Zinc oxide Other nanomaterials Noble metal nanoparticles Quantum dots (QDs) Porous silicon Techniques for designing nanosensors Physical vapor deposition technique Thermal evaporation Sputtering Ion plating Arc vapor deposition Chemical vapor deposition Screen printing Drop coating Spray pyrolysis Application in environmental science and technology Carbon monoxide sensor Carbon dioxide sensor Nitrogen oxide sensor Ammonia sensor Hydrogen sulfide sensor Conclusion and future perspectives References Hybrid nanocomposites and their potential applications in the field of nanosensors/gas and biosensors Introduction Structures of nanomaterials Zero-dimensional structure (0-D) One-dimensional structure (1-D) Two-dimensional structure (2-D) Three-dimensional structure (3-D) Preparation of hybridized nanocomposites Solid-state synthesis Hydro-/solvothermal synthesis Sol-gel synthesis Chemical vapor deposition technique Microwave-assisted wet chemical method Invasion of hybridized nanocomposite materials Classification of hybrid nanocomposites Role of the gas sensor in various fields Requirements for a gas sensor Materials suitable for a gas sensor Recent developments in hybrid nanocomposite-based gas sensors Ammonia gas sensor Hybrid nanocomposites as biosensors Electrochemical/glucose/graphene-based biosensors Xanthine biosensors Cancer biosensor Food biosensors Conclusions, outlook, and future scope Conflicts of interest References Design and fabrication of CNT/graphene-based polymer nanocomposite applications in nanosensors Introduction Materials and methods Materials Preparation of chitosan Addition of graphene nanofiller Thin film processing Characterization techniques Scanning electron microscopy (SEM) Pore size characterization Gas permeability characterization Mechanical properties characterization Resistance measurement Finite element analysis Results and discussion Pore size morphology of chitosan and graphene Gas permeability of chitosan membranes and their nanocomposites Tensile properties of chitosan membranes and their nanocomposites The electrical conductivity of chitosan membranes and their nanocomposites Finite element analysis Recommendation References Nanomaterials dispersed liquid crystalline self-assembly of hybrid matrix application towards thermal sensor Introduction Overview of liquid crystals Taxonomy of liquid crystals Thermotropic liquid crystal Lyotropic liquid crystal Functional properties and application of liquid crystal Important exploration of nanoscience and nanotechnology Drawbacks of nanomaterials Evaluation of nanomaterials from bulk materials Varieties of nanomaterials and their applications Dimensions of nanomaterials Nanomaterial dispersed liquid crystal Liquid crystal-based temperature sensor Scope of sensor Design and fabrication of nanomaterial dispersed liquid crystal (NLC) temperature sensor Experimental set-up, observation, and results Wireless liquid crystal temperature sensor Design of sensor Results and discussions Conclusions and outlook Benefits and future aspects References Carbon-based nanomaterials as novel nanosensors Introduction Carbon-based nanomaterials Carbon nanotube Graphene Diamond Sensing properties Nanosensors Optical nanosensors Electromagnetic nanosensors Gas nanosensors CNT-based nanosensors Graphene-based nanosensors Diamond-based nanosensors Biosensors Graphene-based electrochemical biosensors Potential applications of carbon-based nanosensors Pharmaceutical analysis Bioimaging and biosensing applications Limitations and drawbacks of carbon-based nanosensors Sample preparation Lack of self-validation and standardization with real-life samples Nanotoxicity The risk assessment of exposures Product cost Conclusion Acknowledgment References Polymerized hybrid nanocomposite implementations of energy conversion cells device An overview of environmental science innovations Polymers Structure of polymers Properties of the polymer Thermal properties of polymers Composites Types of composite materials Fiber-reinforced composites Particulate composite Electrolytes Liquid electrolyte Solid electrolyte Classification of solid electrolytes Polymer electrolyte Classification of polymer electrolytes Conventional polymer salt complex or solid polymer electrolyte (SPE) Plasticized polymer salt complex Composite polymer electrolyte (CPE) Gel and polymer gel electrolyte Polymer nanocomposite and their classifications Investigation of polymer nanocomposites Transport mechanism in nanocomposite polymer electrolyte VTF equation Arrhenius equation Applications of nanocomposite polymer-gel electrolytes in environmentally friendly devices Hydrogen-oxygen fuel cell Solid-state rechargeable battery Sensors Supercapacitors Photoelectrochemical cells Solar cells Objectives Structural and ion transport studies in (100-x) PVdF+ xNH4SCN gel electrolyte Membrane fabrication Results and discussions Structural characterization X-ray diffraction (XRD) Scanning electron microscopy (SEM) Infrared spectroscopy (IR) characterization Electrochemical characterization Cyclic voltammetric study Electrical characterization Ionic conducting studies Dielectric studies Application of polymer nanocomposites in environmentally friendly devices Basics of fuel cells Working principle of fuel cells Polymer electrolyte membrane fuel cell (PEMFC) Applications of polymer nanocomposites in fuel cells EMF measurement of fuel cell testing Application of fuel cell Conclusions and outlook Remarks and future prospects References Smart polymer systems as concrete self-healing agents Introduction Self-healing property Concrete self-healing mechanisms Autogenous Mineral admixtures Bacteria Adhesive materials Polymers in concrete self-healing Poly (vinyl alcohol) (PVA) Poly (lactic acid) (PLA) Polystyrene (PS) Polyurethanes (PUs) Epoxy resin Polyacrylates Alginates Superabsorbent polymers (SAPs) Trends in concrete self-healing Final considerations References Chemical engineering of protein cages and nanoparticles for pharmaceutical applications Introduction to chemical modification of proteins Uncommon viral protein cages Adenovirus Viruses as protein cages Qβ bacteriophage Nonviral protein cages Heat-shock proteins (Hsps) Ferritin Vault proteins (VPs) Background and rationale Significance and selectivity Chemical modification Residue-specific amino acid modification strategies Lysine Carboxyl Cystine Tyrosines Arginine Tryptophan Methionine Nanoparticles targeted for drug delivery Passive targeting Active targeting Advantages and disadvantages Applications References Index Back COver