ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanobioanalytical Approaches to Medical Diagnostics

دانلود کتاب رویکردهای نانوزیست تحلیلی به تشخیص پزشکی

Nanobioanalytical Approaches to Medical Diagnostics

مشخصات کتاب

Nanobioanalytical Approaches to Medical Diagnostics

دسته بندی: فناوری نانو
ویرایش:  
نویسندگان:   
سری: Woodhead Publishing Series in Biomaterials 
ISBN (شابک) : 0323851479, 9780323851473 
ناشر: Woodhead Publishing 
سال نشر: 2022 
تعداد صفحات: 432 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Nanobioanalytical Approaches to Medical Diagnostics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب رویکردهای نانوزیست تحلیلی به تشخیص پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب رویکردهای نانوزیست تحلیلی به تشخیص پزشکی



رویکردهای نانوزیست تحلیلی در تشخیص پزشکی طیف وسیعی از نانوزیست مواد و نانودستگاه‌های زیست تحلیلی را برای تشخیص پزشکی بررسی می‌کند. نانوبیومواد و نانو دستگاه‌ها در سیستم‌های بیوآنالیتیکی و بیوشیمیایی مختلف برای ارائه تشخیص‌های بی‌درنگ و در نقطه مراقبت استفاده می‌شوند. خواص تخصصی نانوذرات به آنها امکان مهندسی و سازگاری را می دهد تا اثر مورد نیاز را در یک سیستم بیو تحلیلی یا بیوشیمیایی ایجاد کنند - نتایج تشخیصی هدفمند و دقیق را در طیف وسیعی از کاربردهای زیست پزشکی ارائه می دهد.

این کتاب هر دو روش سنتی بیوشیمیایی و مدرن، ترکیبی از رویکردهای نانو به تشخیص پزشکی را پوشش می دهد. فصل‌ها طیف وسیعی از مدل‌های in vitro، in vivo و ex vivo را برای نانوبیوآنالیتیک‌ها، از جمله DNA و پپتید، گلبول‌های قرمز، میکروسیال و غیره را شرح می‌دهند. علاوه بر این، بخش‌ها همچنین به کاربردهای مختلف تشخیصی پزشکی، مانند تشخیص سرطان، تشخیص بیماری‌های عفونی و سنجش قند خون می‌پردازند.


توضیحاتی درمورد کتاب به خارجی

Nanobioanalytical Approaches to Medical Diagnostics reviews a range of nanobiomaterials and bioanalytical nano-devices for medical diagnostics. Nanobiomaterials and nano-devices are used in various bioanalytical and biochemical systems to provide real-time, point-of-care diagnostics. The specialized properties of nanoparticles allow them to be engineered and adapted to produce the required effect within a bioanalytical or biochemical system – offering targeted and detailed diagnostic results in a range of biomedical applications.

This book covers both traditional biochemical and modern, combined nano-approaches to medical diagnostics. Chapters detail a range of in vitro, in vivo and ex vivo models for nanobioanalytics, including DNA and peptide-based, erythrocyte, microfluidic and more. In addition, sections also look at various different medical diagnostic applications, such as in cancer detection, infectious disease diagnosis and blood glucose sensing.



فهرست مطالب

Front Cover
Nanobioanalytical Approaches to Medical Diagnostics
Copyright
Contents
Contributors
Preface
Chapter 1: Prospects of fluidic force microscopy and related biosensors for medical applications
	1.1. Atomic force microscopy
	1.2. Cell biology with AFM
	1.3. Fluidic force microscopy
	1.4. Single-cell force spectroscopy by FluidFM
	1.5. Bacterial adhesion measured by FluidFM
	1.6. Eukaryotic cell adhesion
	1.7. Additional fluidic force microscopy functions
	1.8. Measurements by computer-controlled micropipette
	1.9. Label-free biosensors for cell adhesion analysis
	1.10. Summary
	Acknowledgments
	References
Chapter 2: Point of care diagnostics for cancer: Recent trends and challenges
	2.1. Introduction
	2.2. Role of biomarkers in the detection of cancer
		2.2.1. Types of biomarkers for cancer detection
			2.2.1.1. Protein-based biomarkers
			2.2.1.2. Nucleic acid-based biomarkers
			2.2.1.3. Cancer cell-based biomarkers
			2.2.1.4. Metabolites-based biomarkers
			2.2.1.5. Exosomes
		2.2.2. Toward early detection of cancer
	2.3. Point-of-care diagnostics for cancer
		2.3.1. Introduction
		2.3.2. Types of point of care devices in cancer
			2.3.2.1. Imaging tools-based point of care diagnostics
				Ultrasound-based POC cancer diagnostics
				Optical imaging
				Nuclear medicine imaging
			2.3.2.2. Biosensors-based point-of-care diagnostic tools
				Electrochemical biosensors
				Optical biosensors
				Piezoelectric biosensors
	2.4. Conclusion and future perspectives
	Acknowledgments
	References
Chapter 3: Bioelectrochemical methods in biomolecular analysis
	3.1. Introduction
	3.2. Types of bioelectrochemical methods for bimolecular analysis: Working mechanism
		3.2.1. Voltammetric/amperometric biosensors
		3.2.2. Potentiometric biosensors
		3.2.3. Impedimetric biosensors
		3.2.4. Bioelectrochemical system based biosensor
	3.3. Application of bioelectrochemical system based biosensor
		3.3.1. Detection of hexavalent chromium
		3.3.2. Detection of toxic compounds
		3.3.3. Detection of acetaldehyde
		3.3.4. Detection of fumarate
		3.3.5. Determination of water quality
		3.3.6. Detection of volatile fatty acids
		3.3.7. Detection of dissolved oxygen
		3.3.8. Detection of chemical oxygen demand
		3.3.9. Detection of biological oxygen demand
	3.4. Bioelectrochemical methods for cell analysis
		3.4.1. Scanning electrochemical microscopy (SECM) method
			3.4.1.1. Detection of assimilable organic carbon
			3.4.1.2. Detection of acetate
	3.5. Bioelectrochemical methods for cell analysis
	3.6. Bioelectrochemical methods for cell culture fabrication and cell stimulation
	3.7. Prospective and future trends
	References
Chapter 4: Electrochemical nano-aptasensor as potential diagnostic device for thrombin
	4.1. Introduction
	4.2. Aptasensor
		4.2.1. Aptamer
			4.2.1.1. Selection of aptamer
			4.2.1.2. Immobilization methods of aptamer
		4.2.2. Incorporation of nanomaterials
		4.2.3. Detection systems in aptasensing
			4.2.3.1. Optical detection
			4.2.3.2. Electrochemical detection
	4.3. Thrombin
		4.3.1. Significance of thrombin
		4.3.2. Conventional detection methods of thrombin
		4.3.3. Thrombin-binding aptamers
	4.4. Application of electrochemical aptasensors in thrombin detection
	4.5. Conclusions and future outlook
	Conflict of interest
	Acknowledgments
	References
Chapter 5: Antibiotics and analytical methods used for their determination
	5.1. Introduction
	5.2. Antibacterial drugs and the extent of their use
		5.2.1. Classic methods of antibiotic determination
		5.2.2. Biosensor approaches to antibiotic determination
			5.2.2.1. Electrochemical biosensors
			5.2.2.2. Immunosensors
			5.2.2.3. Aptasensors
			5.2.2.4. Molecularly imprinted polymer sensors
			5.2.2.5. Acoustic biosensors
			5.2.2.6. Microbial sensory systems for antibiotic detection
			5.2.2.7. Optical biosensors
	5.3. Conclusion
	Acknowledgments
	Conflict of interest
	References
Chapter 6: Integration of microfluidics with biosensing technology for noncommunicable disease diagnosis
	6.1. Introduction
	6.2. Biosensor technology
		6.2.1. Classification of biosensors
			6.2.1.1. Enzyme-based biosensors
			6.2.1.2. Antibody-based biosensors
			6.2.1.3. Aptamers-based biosensors
	6.3. Microfluidics technology
		6.3.1. Fluid dynamics in microfluidics
			6.3.1.1. Fluid viscosity
			6.3.1.2. Momentum and Navier Stokes equation
	6.4. Microfluidics-based biosensors
		6.4.1. Applications of microfluidic-based biosensor
			6.4.1.1. Cancer diagnostics
			6.4.1.2. Cardiovascular disease detection
			6.4.1.3. Cholesterol monitoring
			6.4.1.4. Early assessment of diabetes mellitus
	6.5. Communication technology
		6.5.1. Combining sensors with communication infrastructure
		6.5.2. WSN in monitoring non-communicable disease
		6.5.3. Microfluidics-based biosensor and WSN
		6.5.4. Adoption of microfluidics biosensor in wearable technology
	6.6. Conclusion
	References
Chapter 7: Role and implication of nanomaterials in clinical diagnostics
	7.1. Introduction
	7.2. Nanomaterials in bioimaging based diagnostics
		7.2.1. Magnetic resonance imaging
		7.2.2. Positron emission tomography scan
		7.2.3. Ultrasound imaging
		7.2.4. Computed tomography
		7.2.5. Photoacoustic imaging
	7.3. Nanodevices
		7.3.1. Nanowires-based biosensors
		7.3.2. Nanoporous silica chips
		7.3.3. Nanofluidic devices
		7.3.4. Devices using nanocantilevers
	7.4. Nano-biosensors
		7.4.1. Requirement of nano-biosensors in clinical diagnosis
		7.4.2. Types of nano-biosensors
			7.4.2.1. Use of electrochemical immuno-nanosensors
			7.4.2.2. Nanomaterial-based optical sensors
				Photoluminescence-based optical nano-biosensors
			7.4.2.3. Use of nanoparticles for developing aptasensors
	7.5. Lateral flow assay
	7.6. Safety concerns and limitations of using nanoparticle
	7.7. Conclusion and future prospects
	Acknowledgments
	References
Chapter 8: Nano-materials in biochemical analysis
	8.1. Introduction
	8.2. Classification of nanoparticles
		8.2.1. Metallic nanoparticles
		8.2.2. Non-metallic nanoparticles
		8.2.3. Biodegradable nanoparticles
	8.3. Synthesis of nanoparticles
		8.3.1. Wet-chemical processes
		8.3.2. Physical methods of synthesis
		8.3.3. Gas-phase preparation
	8.4. Functionalization of nanomaterials for biochemical applications
	8.5. Biochemical applications of nanoparticles
		8.5.1. Detection of oxidative stress biomarkers
			8.5.1.1. Lipid-based biomarkers detection
			8.5.1.2. Hydrogen peroxide detection
			8.5.1.3. Superoxide anion detection
			8.5.1.4. Hydroxyl radical detection
			8.5.1.5. Reduced glutathione detection
			8.5.1.6. 8-Hydroxy-2-deoxyguanosine detection
			8.5.1.7. C-reactive protein detection
		8.5.2. Enzyme-like activity
			8.5.2.1. Nanomaterials exhibiting superoxide dismutase-like activity
			8.5.2.2. Nanomaterials exhibiting peroxidase-like activity
			8.5.2.3. Nanomaterials exhibiting oxidase-like activity
			8.5.2.4. Nanomaterials exhibiting catalase-like activity
	8.6. Conclusion and future prospects
	References
Chapter 9: Lignocellulose-based nanomaterials for diagnostic and therapeutic applications
	9.1. Introduction
	9.2. Lignocellulose and its composition
	9.3. Nanoparticles from lignocellulose
		9.3.1. Preparation
			9.3.1.1. Lignin based nanomaterials
			9.3.1.2. Cellulose based nanomaterials
		9.3.2. Techniques used for preparing nano-cellulose
			9.3.2.1. High-pressure homogenization
			9.3.2.2. Microfluidization
			9.3.2.3. Cryocrushing
			9.3.2.4. Grinding
			9.3.2.5. High intensity ultrasonication (HIUS)
			9.3.2.6. Steam explosion
	9.4. Biomedical applications of LCB nanomaterials
	9.5. Conclusion and future prospects
	References
Chapter 10: Bioanalytical approaches in detection of free radicals and RONS
	10.1. Introduction
	10.2. Overview of ROS detection methods
	10.3. Conventional ex vivo bioanalytical methods
		10.3.1. Colorimetric methods
		10.3.2. Fluorescence spectrometry-based methods
		10.3.3. Immunoblotting approach for indirect ROS effects
	10.4. Conventional in vivo methods
		10.4.1. Microscopy based direct visualization of radical and RNOS
		10.4.2. Flow cytometry based semi-quantitative analysis
		10.4.3. Live imaging methods
	10.5. Advance methods for radical/RNOS detection
		10.5.1. ESR-based methods
		10.5.2. NMR-based methods
	10.6. Conclusion
	References
Chapter 11: Nano-biosensors for biochemical analysis
	11.1. Introduction
	11.2. Biosensors
		11.2.1. Types
	11.3. AuNP-based biosensors
	11.4. Carbon nanotube based biosensors
	11.5. Quantum dots based biosensors
	11.6. Nanoparticles in analytical biochemistry
		11.6.1. Glucose biosensor
		11.6.2. Choline nanosensors
		11.6.3. Lactate biosensor
		11.6.4. Triglyceride nanosensors
		11.6.5. Ochratoxin A detection
	11.7. Nanoparticles in bioassays
		11.7.1. C-reactive protein
	11.8. Applications
	11.9. Conclusion and future perspectives
	Acknowledgments
	References
Chapter 12: Nanobiomaterials in biomedicine: Designing approaches and critical concepts
	12.1. Introduction
	12.2. Nanomaterials and it\'s applications in nanomedicine
		12.2.1. Fundamentals of nanotechnology based techniques in designing of drug
	12.3. Nanoparticles used in drug delivery system
		12.3.1. Polymeric micelles
		12.3.2. Polymeric nanoparticles
		12.3.3. Polymeric drug conjugates
		12.3.4. Dendrimers
		12.3.5. Nanocrystals
		12.3.6. Liposomes
		12.3.7. Nanoparticles based on solid lipids
		12.3.8. Inorganic nanoparticles
		12.3.9. Silica materials
	12.4. Conclusion
	References
Chapter 13: Erythrocytes model for oxidative stress analysis
	5.1. Oxidative stress
		5.1.1. Stress
		5.1.2. Cold stress
		5.1.3. Physical exercise and stress
		5.1.4. Chronic stress
		5.1.5. Nutritional stress
		5.1.6. Hypoxic stress
	5.2. Oxidative stress and diseases
	5.3. Oxidative stress and autoimmune diseases
	5.4. Oxidative stress and rheumatoid arthritis
		5.4.1. Rheumatoid arthritis (RA)
		5.4.2. Oxidative stress measurement in RA
	5.5. Oxidative stress and erythrocytes
	5.6. Conclusion
	Acknowledgment
	Authors contributions
	References
Chapter 14: Lipid film based biosensors: A protection tool for the public health
	14.1. Introduction
	14.2. Construction of lipid film based nanosensors
		14.2.1. Metal supported lipid membranes
		14.2.2. Stabilized lipid films formed on a glass fiber filter
		14.2.3. Polymer-supported bilayer lipid membranes
		14.2.4. Polymer lipid films supported on graphene and ZnO microelectrodes
		14.2.5. Fabrication of biosensors with nanoporous lipid membranes
	14.3. Applications of lipid film based biosensors in clinical analysis for the protection of public health
	14.4. Conclusion
	References
Index
Back Cover




نظرات کاربران