ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Multivariate Statistical Machine Learning Methods for Genomic Prediction

دانلود کتاب روش‌های یادگیری ماشینی آماری چند متغیره برای پیش‌بینی ژنومی

Multivariate Statistical Machine Learning Methods for Genomic Prediction

مشخصات کتاب

Multivariate Statistical Machine Learning Methods for Genomic Prediction

ویرایش: [1st ed. 2022] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 3030890090, 9783030890094 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 715
[707] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 Mb 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Multivariate Statistical Machine Learning Methods for Genomic Prediction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روش‌های یادگیری ماشینی آماری چند متغیره برای پیش‌بینی ژنومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب روش‌های یادگیری ماشینی آماری چند متغیره برای پیش‌بینی ژنومی

این کتاب تحت مجوز CC BY 4.0 دسترسی آزاد است

این کتاب دسترسی آزاد جدیدترین مدل‌های پیش‌بینی پایه ژنوم را که در حال حاضر توسط آماردانان، پرورش دهندگان و پرورش‌دهندگان استفاده می‌شود گرد هم می‌آورد. دانشمندان داده این یک راه در دسترس برای درک نظریه پشت هر ابزار یادگیری آماری، پیش پردازش مورد نیاز، اصول ساخت مدل، نحوه آموزش روش های یادگیری آماری، اسکریپت های R اساسی مورد نیاز برای اجرای هر ابزار یادگیری آماری، و خروجی هر ابزار برای انجام این کار، کتاب برای هر ابزار، نظریه پس‌زمینه، برخی از عناصر نرم‌افزار آماری R را برای اجرای آن، زیربنای مفهومی و حداقل دو مثال گویا با داده‌های آزمایش‌های انتخاب ژنومی در دنیای واقعی ارائه می‌کند. در نهایت، نمونه های کار شده به خوانندگان کمک می کند تا درک خود را بررسی کنند.
این کتاب برای خوانندگان اصلاح نژاد گیاهی (و حیوانات)، ژنتیک دانان و آمارشناسان بسیار جذاب خواهد بود، زیرا به روشی بسیار قابل دسترس نظریه لازم را ارائه می دهد. ، کد R مناسب و مثال های گویا برای درک کامل هر ابزار یادگیری آماری. علاوه بر این، مزایا و معایب هر ابزار را می سنجد.


توضیحاتی درمورد کتاب به خارجی

This book is open access under a CC BY 4.0 license

This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool.  To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.
The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.



فهرست مطالب

Foreword
Preface
Acknowledgments
Contents
Chapter 1: General Elements of Genomic Selection and Statistical Learning
	1.1 Data as a Powerful Weapon
	1.2 Genomic Selection
		1.2.1 Concepts of Genomic Selection
		1.2.2 Why Is Statistical Machine Learning a Key Element of Genomic Selection?
	1.3 Modeling Basics
		1.3.1 What Is a Statistical Machine Learning Model?
		1.3.2 The Two Cultures of Model Building: Prediction Versus Inference
		1.3.3 Types of Statistical Machine Learning Models and Model Effects
			1.3.3.1 Types of Statistical Machine Learning Models
			1.3.3.2 Model Effects
	1.4 Matrix Algebra Review
	1.5 Statistical Data Types
		1.5.1 Data Types
		1.5.2 Multivariate Data Types
	1.6 Types of Learning
		1.6.1 Definition and Examples of Supervised Learning
		1.6.2 Definitions and Examples of Unsupervised Learning
		1.6.3 Definition and Examples of Semi-Supervised Learning
	References
Chapter 2: Preprocessing Tools for Data Preparation
	2.1 Fixed or Random Effects
	2.2 BLUEs and BLUPs
	2.3 Marker Depuration
	2.4 Methods to Compute the Genomic Relationship Matrix
	2.5 Genomic Breeding Values and Their Estimation
	2.6 Normalization Methods
	2.7 General Suggestions for Removing or Adding Inputs
	2.8 Principal Component Analysis as a Compression Method
	Appendix 1
	Appendix 2
	References
Chapter 3: Elements for Building Supervised Statistical Machine Learning Models
	3.1 Definition of a Linear Multiple Regression Model
	3.2 Fitting a Linear Multiple Regression Model via the Ordinary Least Square (OLS) Method
	3.3 Fitting the Linear Multiple Regression Model via the Maximum Likelihood (ML) Method
	3.4 Fitting the Linear Multiple Regression Model via the Gradient Descent (GD) Method
	3.5 Advantages and Disadvantages of Standard Linear Regression Models (OLS and MLR)
	3.6 Regularized Linear Multiple Regression Model
		3.6.1 Ridge Regression
		3.6.2 Lasso Regression
	3.7 Logistic Regression
		3.7.1 Logistic Ridge Regression
		3.7.2 Lasso Logistic Regression
	Appendix 1: R Code for Ridge Regression Used in Example 2
	References
Chapter 4: Overfitting, Model Tuning, and Evaluation of Prediction Performance
	4.1 The Problem of Overfitting and Underfitting
	4.2 The Trade-Off Between Prediction Accuracy and Model Interpretability
	4.3 Cross-validation
		4.3.1 The Single Hold-Out Set Approach
		4.3.2 The k-Fold Cross-validation
		4.3.3 The Leave-One-Out Cross-validation
		4.3.4 The Leave-m-Out Cross-validation
		4.3.5 Random Cross-validation
		4.3.6 The Leave-One-Group-Out Cross-validation
		4.3.7 Bootstrap Cross-validation
		4.3.8 Incomplete Block Cross-validation
		4.3.9 Random Cross-validation with Blocks
		4.3.10 Other Options and General Comments on Cross-validation
	4.4 Model Tuning
		4.4.1 Why Is Model Tuning Important?
		4.4.2 Methods for Hyperparameter Tuning (Grid Search, Random Search, etc.)
	4.5 Metrics for the Evaluation of Prediction Performance
		4.5.1 Quantitative Measures of Prediction Performance
		4.5.2 Binary and Ordinal Measures of Prediction Performance
		4.5.3 Count Measures of Prediction Performance
	References
Chapter 5: Linear Mixed Models
	5.1 General of Linear Mixed Models
	5.2 Estimation of the Linear Mixed Model
		5.2.1 Maximum Likelihood Estimation
			5.2.1.1 EM Algorithm
				E Step
				M Step
			5.2.1.2 REML
			5.2.1.3 BLUPs
	5.3 Linear Mixed Models in Genomic Prediction
	5.4 Illustrative Examples of the Univariate LMM
	5.5 Multi-trait Genomic Linear Mixed-Effects Models
	5.6 Final Comments
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	References
Chapter 6: Bayesian Genomic Linear Regression
	6.1 Bayes Theorem and Bayesian Linear Regression
	6.2 Bayesian Genome-Based Ridge Regression
	6.3 Bayesian GBLUP Genomic Model
	6.4 Genomic-Enabled Prediction BayesA Model
	6.5 Genomic-Enabled Prediction BayesB and BayesC Models
	6.6 Genomic-Enabled Prediction Bayesian Lasso Model
	6.7 Extended Predictor in Bayesian Genomic Regression Models
	6.8 Bayesian Genomic Multi-trait Linear Regression Model
		6.8.1 Genomic Multi-trait Linear Model
	6.9 Bayesian Genomic Multi-trait and Multi-environment Model (BMTME)
	Appendix 1
	Appendix 2: Setting Hyperparameters for the Prior Distributions of the BRR Model
	Appendix 3: R Code Example 1
	Appendix 4: R Code Example 2
	Appendix 5
		R Code Example 3
		R Code for Example 4
	References
Chapter 7: Bayesian and Classical Prediction Models for Categorical and Count Data
	7.1 Introduction
	7.2 Bayesian Ordinal Regression Model
		7.2.1 Illustrative Examples
	7.3 Ordinal Logistic Regression
	7.4 Penalized Multinomial Logistic Regression
		7.4.1 Illustrative Examples for Multinomial Penalized Logistic Regression
	7.5 Penalized Poisson Regression
	7.6 Final Comments
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4 (Example 4)
	Appendix 5
	Appendix 6
	References
Chapter 8: Reproducing Kernel Hilbert Spaces Regression and Classification Methods
	8.1 The Reproducing Kernel Hilbert Spaces (RKHS)
	8.2 Generalized Kernel Model
		8.2.1 Parameter Estimation Under the Frequentist Paradigm
		8.2.2 Kernels
		8.2.3 Kernel Trick
		8.2.4 Popular Kernel Functions
		8.2.5 A Two Separate Step Process for Building Kernel Machines
	8.3 Kernel Methods for Gaussian Response Variables
	8.4 Kernel Methods for Binary Response Variables
	8.5 Kernel Methods for Categorical Response Variables
	8.6 The Linear Mixed Model with Kernels
	8.7 Hyperparameter Tuning for Building the Kernels
	8.8 Bayesian Kernel Methods
		8.8.1 Extended Predictor Under the Bayesian Kernel BLUP
		8.8.2 Extended Predictor Under the Bayesian Kernel BLUP with a Binary Response Variable
		8.8.3 Extended Predictor Under the Bayesian Kernel BLUP with a Categorical Response Variable
	8.9 Multi-trait Bayesian Kernel
	8.10 Kernel Compression Methods
		8.10.1 Extended Predictor Under the Approximate Kernel Method
	8.11 Final Comments
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Appendix 8
	Appendix 9
	Appendix 10
	Appendix 11
	References
Chapter 9: Support Vector Machines and Support Vector Regression
	9.1 Introduction to Support Vector Machine
	9.2 Hyperplane
	9.3 Maximum Margin Classifier
		9.3.1 Derivation of the Maximum Margin Classifier
		9.3.2 Wolfe Dual
	9.4 Derivation of the Support Vector Classifier
	9.5 Support Vector Machine
		9.5.1 One-Versus-One Classification
		9.5.2 One-Versus-All Classification
	9.6 Support Vector Regression
	Appendix 1
	Appendix 2
	Appendix 3
	References
Chapter 10: Fundamentals of Artificial Neural Networks and Deep Learning
	10.1 The Inspiration for the Neural Network Model
	10.2 The Building Blocks of Artificial Neural Networks
	10.3 Activation Functions
		10.3.1 Linear
		10.3.2 Rectifier Linear Unit (ReLU)
		10.3.3 Leaky ReLU
		10.3.4 Sigmoid
		10.3.5 Softmax
		10.3.6 Tanh
	10.4 The Universal Approximation Theorem
	10.5 Artificial Neural Network Topologies
	10.6 Successful Applications of ANN and DL
	10.7 Loss Functions
		10.7.1 Loss Functions for Continuous Outcomes
		10.7.2 Loss Functions for Binary and Ordinal Outcomes
		10.7.3 Regularized Loss Functions
		10.7.4 Early Stopping Method of Training
	10.8 The King Algorithm for Training Artificial Neural Networks: Backpropagation
		10.8.1 Backpropagation Algorithm: Online Version
			10.8.1.1 Feedforward Part
			10.8.1.2 Backpropagation Part
		10.8.2 Illustrative Example 10.1: A Hand Computation
		10.8.3 Illustrative Example 10.2-By Hand Computation
	References
Chapter 11: Artificial Neural Networks and Deep Learning for Genomic Prediction of Continuous Outcomes
	11.1 Hyperparameters to Be Tuned in ANN and DL
		11.1.1 Network Topology
		11.1.2 Activation Functions
		11.1.3 Loss Function
		11.1.4 Number of Hidden Layers
		11.1.5 Number of Neurons in Each Layer
		11.1.6 Regularization Type
		11.1.7 Learning Rate
		11.1.8 Number of Epochs and Number of Batches
		11.1.9 Normalization Scheme for Input Data
	11.2 Popular DL Frameworks
	11.3 Optimizers
	11.4 Illustrative Examples
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	References
Chapter 12: Artificial Neural Networks and Deep Learning for Genomic Prediction of Binary, Ordinal, and Mixed Outcomes
	12.1 Training DNN with Binary Outcomes
	12.2 Training DNN with Categorical (Ordinal) Outcomes
	12.3 Training DNN with Count Outcomes
	12.4 Training DNN with Multivariate Outcomes
		12.4.1 DNN with Multivariate Continuous Outcomes
		12.4.2 DNN with Multivariate Binary Outcomes
		12.4.3 DNN with Multivariate Ordinal Outcomes
		12.4.4 DNN with Multivariate Count Outcomes
		12.4.5 DNN with Multivariate Mixed Outcomes
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	References
Chapter 13: Convolutional Neural Networks
	13.1 The Importance of Convolutional Neural Networks
	13.2 Tensors
	13.3 Convolution
	13.4 Pooling
	13.5 Convolutional Operation for 1D Tensor for Sequence Data
	13.6 Motivation of CNN
	13.7 Why Are CNNs Preferred over Feedforward Deep Neural Networks for Processing Images?
	13.8 Illustrative Examples
	13.9 2D Convolution Example
	13.10 Critics of Deep Learning
	Appendix 1
	Appendix 2
	References
Chapter 14: Functional Regression
	14.1 Principles of Functional Linear Regression Analyses
	14.2 Basis Functions
		14.2.1 Fourier Basis
		14.2.2 B-Spline Basis
	14.3 Illustrative Examples
	14.4 Functional Regression with a Smoothed Coefficient Function
	14.5 Bayesian Estimation of the Functional Regression
	Appendix 1
	Appendix 2 (Example 14.4)
	Appendix 3 (Example 14.5)
	Appendix 4 (Example 14.6)
	References
Chapter 15: Random Forest for Genomic Prediction
	15.1 Motivation of Random Forest
	15.2 Decision Trees
	15.3 Random Forest
	15.4 RF Algorithm for Continuous, Binary, and Categorical Response Variables
		15.4.1 Splitting Rules
	15.5 RF Algorithm for Count Response Variables
	15.6 RF Algorithm for Multivariate Response Variables
	15.7 Final Comments
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	References
Index




نظرات کاربران