ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Multimodality Imaging Innovations In Adult Congenital Heart Disease : Emerging Technologies and Novel Applications

دانلود کتاب نوآوری‌های تصویربرداری چندوجهی در بیماری‌های قلبی مادرزادی بزرگسالان: فناوری‌های نوظهور و کاربردهای جدید

Multimodality Imaging Innovations In Adult Congenital Heart Disease : Emerging Technologies and Novel Applications

مشخصات کتاب

Multimodality Imaging Innovations In Adult Congenital Heart Disease : Emerging Technologies and Novel Applications

ویرایش: [1st ed. 2021.] 
نویسندگان: ,   
سری: Congenital Heart Disease in Adolescents and Adults, 
ISBN (شابک) : 9783030619275, 3030619273 
ناشر: Springer International Publishing 
سال نشر: 2021 
تعداد صفحات: 410 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 62 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Multimodality Imaging Innovations In Adult Congenital Heart Disease : Emerging Technologies and Novel Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نوآوری‌های تصویربرداری چندوجهی در بیماری‌های قلبی مادرزادی بزرگسالان: فناوری‌های نوظهور و کاربردهای جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface to the Series
Preface
Contents
Part I: Emerging Imaging Techniques and Modalities
	1: 3D Echocardiography
		1.1	 Introduction
		1.2	 3DE Acquisition Modes
		1.3	 3DE Image Optimization
			1.3.1	 Volume Manipulation Tools
			1.3.2	 Volume Slice and Edit Tools
			1.3.3	 Volume Viewing Functions
			1.3.4	 3DE Perspective and Viewing Planes
		1.4	 3D Echocardiography and Interventions
			1.4.1	 Surgical Guidance
			1.4.2	 Interventional Cath Guidance
			1.4.3	 Echocardiographic-Fluoroscopic Fusion
		1.5	 Future Directions
		References
	2: Ultrafast Ultrasound Imaging
		2.1	 Introduction to Ultrasound
		2.2	 Ultrafast Ultrasound Imaging
		2.3	 Limitations of Conventional Ultrasound Imaging in Congenital and Pediatric Cardiology
		2.4	 Technological Tools Now Available Using Ultrafast Imaging
			2.4.1	 Visualization of Blood Flow
				2.4.1.1	 Vector Flow Imaging
				2.4.1.2	 Coronary Ultrafast Doppler Angiography (CUDA)
			2.4.2	 Visualization of Tissue Motion
				2.4.2.1	 Shear Wave Imaging
				2.4.2.2	 Electromechanical Wave Imaging (EWI)
			2.4.3	 Tissue Structure and Fiber Orientation
		2.5	 Clinical Applications of Ultrafast Ultrasound Imaging
			2.5.1	 Ventricular Function
			2.5.2	 Evaluating Coronary Perfusion and Cardiac Structure in CHD
			2.5.3	 Rhythm Abnormalities
			2.5.4	 Future Directions
			2.5.5	 Current Limitation of HFRUS
		2.6	 Summary/Conclusion
		References
	3: MRI T1 Mapping: Myocardial Fibrosis
		3.1	 Introduction
		3.2	 Physics Principles
			3.2.1	 What Is T1, Native vs Post-contrast
			3.2.2	 T1 Mapping Sequences
				3.2.2.1	 Magnetisation Preparation Based Methods
					Inversion Recovery Methods
					Saturation Recovery
					Image Readout, Spatial Coverage, and Resolution
			3.2.3	 Interpretation
				3.2.3.1	 Native Tissue
				3.2.3.2	 ECV Fraction
		3.3	 Clinical Applications
			3.3.1	 Tetralogy of Fallot
			3.3.2	 Ebstein Anomaly
			3.3.3	 The Systemic Right Ventricle
			3.3.4	 Cardiac Transplant
			3.3.5	 Aortic Stenosis
		3.4	 Summary
		References
	4: MR Lymphatic Imaging of Thoracic Lymphatic Disorders
		4.1	 Introduction
		4.2	 DCMRL Technique
			4.2.1	 Placement of the Intranodal Needles
			4.2.2	 Transport of the Patient into the MR Suit
			4.2.3	 Coil Coverage
			4.2.4	 Contrast Injection
			4.2.5	 MR Sequences
			4.2.6	 The Contribution of Each MR Sequence
				4.2.6.1	 T2W Imaging
				4.2.6.2	 Fast Acquisition T1 Angiography Imaging
				4.2.6.3	 High-Resolution T1-Delayed Angiographic Sequences
				4.2.6.4	 Alternative MR Lymphangiography Imaging
		4.3	 Applications of the MR Lymphangiography
		4.4	 Conclusion
		4.5 Appendix: DCMRL Technique for Chest Lymphatic Pathology
		References
	5: MRI-Based Catheterization Laboratory
		5.1	 Background and Rationale
		5.2	 MRI Catheter Laboratories in Practice
			5.2.1	 Practical Considerations
			5.2.2	 Safety
			5.2.3	 Communication
			5.2.4	 ECG
			5.2.5	 Haemodynamic Monitoring
			5.2.6	 X-ray Coils
		5.3	 Visualisation and Image Interrogation
		5.4	 Passive Visualisation
		5.5	 Active Catheter Tracking and Visualization
			5.5.1	 Catheters and Guidewires
		5.6	 Clinical Applications of iCMR
			5.6.1	 Diagnostic MRI Catheterisation
				5.6.1.1	 Haemodynamic Assessments by XMR
				5.6.1.2	 Pulmonary Vascular Resistance (PVR and Fick)
				5.6.1.3	 Cardiac Performance and Output
			5.6.2	 MRI-Guided Interventions
			5.6.3	 MRI-Guided Electrophysiology (EP)
			5.6.4	 Other Applications
		5.7	 Future Directions
		References
	6: Cardiac Mechanics I: 3D Speckle Tracking Echocardiography
		6.1	 Introduction
		6.2	 Myocardial Deformation
		6.3	 Myocardial Deformation Patterns in Cardiac Conditions
			6.3.1	 Abnormal Segmental Contractility/Loading
			6.3.2	 Volume Overload
			6.3.3	 Pressure Overload
			6.3.4	 (Genetic) Cardiomyopathies
			6.3.5	 Abnormal Activation
		6.4	 3D Strain
			6.4.1	 Advantages as Compared to 2D
			6.4.2	 Current Limitations of 3D Strain
		6.5	 Changes with Congenital Heart Disease: Examples
			6.5.1	 Healthy Individual
			6.5.2	 Tetralogy of Fallot (TOF)
			6.5.3	 Ebstein Anomaly (EA)
			6.5.4	 Congenitally Corrected Transposition of the Great Arteries
		6.6	 Conclusion
		References
	7: Cardiac Mechanics II: 2D and 3D Tissue Tracking MRI
		7.1	 Introduction
		7.2	 Basic Principles
		7.3	 Established Clinical Applications
		7.4	 Prognostic Implications
		7.5	 Moving Towards 3D Applications: Future Directions of FT
		7.6	 Conclusion
		References
	8: 4D Flow MRI: Flow Dynamics
		8.1	 Introduction
		8.2	 Imaging Methods
			8.2.1	 Acquisition
			8.2.2	 Processing
		8.3	 Applications
			8.3.1	 Shunt or Leak
			8.3.2	 Vascular or Valve Stenosis
			8.3.3	 Valvular Flow and Regurgitation
			8.3.4	 Vessel Flow Patterns and Distribution
			8.3.5	 Ventricular Hemodynamics
		8.4	 Challenges and Outlook
		References
	9: Computational Fluid Dynamics
		9.1	 Introduction
		9.2	 CFD Process for Medical Application
			9.2.1	 Overview
			9.2.2	 Anatomy
			9.2.3	 Material Properties
			9.2.4	 Boundary Conditions
			9.2.5	 Solver Details and Control Parameters
			9.2.6	 Post-processing, Interpretation and Reporting
		9.3	 CFD for Congenital Heart Disease
		9.4	 Summary, Challenges and the Future of CFD in Cardiovascular Medicine
		References
	10: 3D Printing and Holography
		10.1	 Introduction
		10.2	 How to Create a Patient-Specific 3D Representation of the Heart
			10.2.1	 Image Acquisition: What Type of Image Is Needed?
			10.2.2	 Image Segmentation
			10.2.3	 3D Printing Technologies and Materials
			10.2.4	 Computer-Generated Holography
		10.3	 Applications in Congenital Heart Disease
			10.3.1	 Clinical Practice
				10.3.1.1	 Surgical Planning
				10.3.1.2	 Cardiac Catheterization: Interventional Planning and Performance
			10.3.2	 Education and Training
			10.3.3	 Communication with Patients and Relatives
		10.4	 Limitations and Future Directions
		References
Part II: Novel Applications to ACHD
	11: Cardiac Shunts
		11.1	 Overview
			11.1.1	 Shunt Anatomy
				11.1.1.1	 Pre-tricuspid Shunt Defects
				11.1.1.2	 Post-tricuspid Shunt Defects
				11.1.1.3	 Shunt Direction
				11.1.1.4	 Shunt Magnitude
				11.1.1.5	 Intrapulmonary Shunts
			11.1.2	 Volume Overload
			11.1.3	 Pressure Overload
			11.1.4	 Associated Lesions
			11.1.5	 Confounders in Shunt Assessment
		11.2	 Modalities Used in Shunt Evaluation
		11.3	 Echocardiography
			11.3.1	 Delineation of Shunt Anatomy and Flow Direction
				11.3.1.1	 2D and 3D Echocardiography
				11.3.1.2	 Color Doppler
				11.3.1.3	 Contrast Studies
			11.3.2	 Flow Assessment
				11.3.2.1	 Simplified Bernoulli’s Equation
				11.3.2.2	 Doppler Modalities
			11.3.3	 Quantification of Shunt Magnitude
				11.3.3.1	 Atrial and Ventricular Volumes and Function
				11.3.3.2	 Ventricular and Arterial Pressure Load
				11.3.3.3	 Qp:Qs Assessment
			11.3.4	 Strengths and Limitations
		11.4	 Transesophageal Echocardiography
		11.5	 Cardiac Catheterization
			11.5.1	 Basic Principles
			11.5.2	 Shunt Evaluation
			11.5.3	 Pulmonary and Systemic Vascular Resistance
			11.5.4	 Strengths
			11.5.5	 Limitations
		11.6	 Cardiac Magnetic Resonance Imaging
			11.6.1	 Basic Principles
			11.6.2	 Shunt Evaluation
			11.6.3	 Anatomy
			11.6.4	 Strengths
			11.6.5	 Limitations
		11.7	 Computed Tomography Angiography
			11.7.1	 Strengths
			11.7.2	 Limitations
		11.8	 Nuclear Medicine Imaging
		11.9	 Multimodality Imaging in Evaluating Shunt Defects
		References
	12: Repaired Tetralogy of Fallot
		12.1	 Introduction: Role of Imaging in the Assessment of Pathophysiology and Risk Stratification in Repaired Tetralogy of Fallot
		12.2	 Imaging Methods
			12.2.1	 Echocardiography
			12.2.2	 Cardiac MRI
			12.2.3	 Cardiac CT
		12.3	 Advanced Imaging
			12.3.1	 Deep Learning Imaging Analysis
			12.3.2	 Virtual Surgery for RVOT and Conduit Reconstruction
			12.3.3	 3D Modeling
		12.4	 Challenges and Outlook
		References
	13: Aortic Disease: Bicuspid Aortic Valve, Aortic Coarctation, Marfan Syndrome
		13.1	 Introduction
		13.2	 Background
			13.2.1	 Bicuspid Aortic Valve
			13.2.2	 Marfan Syndrome
			13.2.3	 Coarctation of the Aorta
		13.3	 Multimodality Imaging Assessment
			13.3.1	 Echocardiography
			13.3.2	 Cardiovascular Magnetic Resonance Imaging
			13.3.3	 Computed Tomography
		13.4	 Innovations Based on Multimodality Imaging
			13.4.1	 Four-Dimensional Flow Magnetic Resonance Imaging
				13.4.1.1	 4D Flow in Aortic Coarctation
				13.4.1.2	 4D Flow in BAV
				13.4.1.3	 4D Flow in Marfan Syndrome
			13.4.2	 Computational Fluid Dynamics
			13.4.3	 Statistical Shape Modelling
			13.4.4	 Ventriculo-Vascular Coupling
			13.4.5	 Virtual Stenting
			13.4.6	 Three-Dimensional Printing
		13.5	 Conclusions
		References
	14: Transposition of the Great Arteries Repaired by Arterial Switch Operation
		14.1	 Long-Term Results and Surveillance After Arterial Switch Operation
		14.2	 Cardiac Magnetic Resonance Imaging
			14.2.1	 Evaluation of Aortic Root Dilatation and Biomechanics
			14.2.2	 Evaluation of the Right Ventricle Outflow Track and Pulmonary Arteries
			14.2.3	 Evaluation of Myocardial Perfusion
			14.2.4	 Follow-up Interval
		14.3	 Computed Tomography
			14.3.1	 CT Acquisition Protocol
				14.3.1.1	 Contrast Injection
				14.3.1.2	 Gating Management
				14.3.1.3	 Dose Management
			14.3.2	 Indication and Reporting Elements
				14.3.2.1	 Coronary Arteries
				14.3.2.2	 RVOT and Great Vessels
		References
	15: The Systemic Right Ventricle
		15.1	 Introduction
		15.2	 Imaging Goals
		15.3	 Strain
		15.4	 Myocardial Fibrosis
			15.4.1	 Late Gadolinium Enhancement
			15.4.2	 Extracellular Volume Fraction
			15.4.3	 Other Emerging Techniques
		15.5	 Conclusions
		References
	16: Univentricular Heart: Staged Palliation
		16.1	 Basic Principles of Staged Palliation in Univentricular Hearts
			16.1.1	 Surgical Palliation for UVH
		16.2	 Imaging Modalities and Their Applications
			16.2.1	 Three-Dimensional Echocardiography
			16.2.2	 Speckle Tracking Echocardiography
			16.2.3	 Feature Tracking CMR
			16.2.4	 CMR T1 Mapping
			16.2.5	 CMR 4D Flow
		16.3	 Computational Fluid Dynamics
		16.4	 3D Printing
		16.5	 Imaging of Liver Fibrosis
		References
	17: Electrophysiology Interventional Planning
		17.1	 Introduction
			17.1.1	 Role of Cardiac Imaging in Congenital Heart Disease
			17.1.2	 Imaging in Atrial Arrhythmia in Adult Congenital Heart Disease
				17.1.2.1	 Cardiac Imaging in Vascular Access and Underlying Anatomy
				17.1.2.2	 Identification of Arrhythmogenic Substrate
				17.1.2.3	 Cardiac Imaging During Ablation Procedure
			17.1.3	 Imaging in Ventricular Arrhythmias in Adult Congenital Heart Disease
				17.1.3.1	 Cardiac Imaging Pre VT Ablation Procedure: Arrhythmogenic Substrate in ACHD
			17.1.4	 Cardiac Resynchronization Therapy in Congenital Heart Disease
				17.1.4.1	 CRT in Congenital Heart Disease
				17.1.4.2	 Effects of CRT on Systemic Ventricle Ejection Fraction
				17.1.4.3	 Effects of CRT on Right Ventricle Dyssynchrony and Function
				17.1.4.4	 Single Ventricle and CRT
				17.1.4.5	 Current Recommendations
				17.1.4.6	 Cardiac Imaging to Guide CRT Implant
		17.2	 Conclusions
		References
	18: Structural Interventional Planning
		18.1	 Introduction
		18.2	 Echocardiography
		18.3	 Cardiac Computed Tomography
		18.4	 Cardiac Magnetic Resonance Imaging
		18.5	 Future Directions
		References
	19: Ebstein Anomaly
		19.1	 Introduction
		19.2	 Diagnosis and Classification
			19.2.1	 Diagnostic Features
			19.2.2	 Classification Schema
		19.3	 Assessment of Tricuspid Regurgitation Severity and Ventricular Function
			19.3.1	 Tricuspid Regurgitation Severity
			19.3.2	 Ventricular Function
		19.4	 Evaluation of Tricuspid Valve for Repair or Replacement
		19.5	 Preoperative Assessment
		19.6	 Intraoperative and Early Postoperative Assessment
		19.7	 Long-Term Surveillance
		19.8	 Conclusion
		References
	20: Pulmonary Hypertension
		20.1	 Introduction
			20.1.1	 The Cardiopulmonary Unit
			20.1.2	 PH Diagnosis
			20.1.3	 Treatment Monitoring
			20.1.4	 Prognostic Assessment
		20.2	 Imaging Techniques in Pulmonary Hypertension
			20.2.1	 Echocardiography
				20.2.1.1	 Three-Dimensional (3D) Echocardiography
				20.2.1.2	 Deformation: Speckle Tracking Strain
			20.2.2	 Single-Photon Emission Computed Tomography (SPECT)
				20.2.2.1	 Myocardial Perfusion
				20.2.2.2	 Lung Perfusion
			20.2.3	 Dual Energy Computed Tomography (DECT)
			20.2.4	 Magnetic Resonance Imaging (MRI)
				20.2.4.1	 Myocardial Deformation (Strain)
				20.2.4.2	 Lung Perfusion
				20.2.4.3	 4D-Flow
				20.2.4.4	 T1-Mapping
			20.2.5	 Positron-Emission Tomography
			20.2.6	 Optical Coherence Tomography
		20.3	 Conclusions
		References




نظرات کاربران