دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Alireza Haghighat
سری:
ISBN (شابک) : 0367188058, 9780367188054
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 311
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Monte Carlo Methods for Particle Transport به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های مونت کارلو برای انتقال ذرات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بهطور کامل با آخرین پیشرفتها در محاسبات ارزش ویژه مونت کارلو و تکنیکهای کاهش واریانس خودکار و حاوی فصلی کاملاً جدید در زمینه ماتریس شکافت و تکنیکهای ترکیبی جایگزین بهروزرسانی شده است. این ویرایش دوم کاربردهای روش مونت کارلو را برای کاربردهای دنیای واقعی بررسی میکند و مفاهیم و محدودیتهای آن را توضیح میدهد. این کتاب با مثالهای گویا، مشتقهای ریاضی، الگوریتمهای کامپیوتری و مسائل مربوط به تکالیف، یک کتاب درسی ایدهآل و راهنمای عملی برای مهندسان هستهای و دانشمندانی است که به دنبال کاربردهای روش مونت کارلو، علاوه بر دانشجویان فیزیک و مهندسی، و کسانی است که در این زمینه مشغول به کار هستند. پیشرفت روشهای مونت کارلو.
Fully updated with the latest developments in the eigenvalue Monte Carlo calculations and automatic variance reduction techniques and containing an entirely new chapter on fission matrix and alternative hybrid techniques. This second edition explores the uses of the Monte Carlo method for real-world applications, explaining its concepts and limitations. Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, it is an ideal textbook and practical guide for nuclear engineers and scientists looking into the applications of the Monte Carlo method, in addition to students in physics and engineering, and those engaged in the advancement of the Monte Carlo methods.
Cover Half Title Title Page Copyright Page Dedication Contents Acknowledgement About the Author Chapter 1: Introduction 1.1 HISTORY OF MONTE CARLO SIMULATION 1.2 STATUS OF MONTE CARLO CODES 1.3 MOTIVATION FOR WRITING THIS BOOK 1.4 AUTHOR’S MESSAGE TO INSTRUCTORS Chapter 2: Random Variables and Sampling 2.1 INTRODUCTION 2.2 RANDOM VARIABLES 2.2.1 Discrete random variable 2.2.2 Continuous random variable 2.2.3 Notes on pdf and cdf characteristics 2.3 RANDOM NUMBERS 2.4 DERIVATION OF THE FUNDAMENTAL FORMULATION OF MONTE CARLO (FFMC) 2.5 SAMPLING ONE DIMENSIONAL DENSITY FUNCTIONS 2.5.1 Analytical inversion 2.5.2 Numerical inversion 2.5.3 Probability mixing method 2.5.4 Rejection technique 2.5.5 Numerical evaluation 2.5.6 Table lookup 2.6 SAMPLING MULTIDIMENSIONAL DENSITY FUNCTIONS 2.7 EXAMPLE PROCEDURES FOR SAMPLING A FEW COMMONLY USED DISTRIBUTIONS 2.7.1 Normal distribution 2.7.2 Watt spectrum 2.7.3 Cosine and sine functions sampling 2.8 REMARKS Chapter 3: Random Number Generator (RNG) 3.1 INTRODUCTION 3.2 RANDOM NUMBER GENERATION APPROACHES 3.3 PSEUDO RANDOM NUMBER GENERATORS (PRNGS) 3.3.1 Congruential Generators 3.3.2 Multiple Recursive Generator 3.4 TESTING RANDOMNESS 3.4.1 χ2 − Test 3.4.1.1 χ2 − distribution 3.4.1.2 Procedure for the use of χ2 − test 3.4.2 Frequency test 3.4.3 Serial test 3.4.4 Gap test 3.4.5 Poker test 3.4.6 Moment test 3.4.7 Serial correlation test 3.4.8 Serial test via plotting 3.5 EXAMPLE FOR TESTING A PRNG 3.5.1 Evaluation of PRNG based on period and average 3.5.2 Serial test via plotting 3.6 REMARKS Chapter 4: Fundamentals of Probability and Statistics 4.1 INTRODUCTION 4.2 EXPECTATION VALUE 4.2.1 Single variable 4.2.2 Useful formulation for the expectation operator 4.2.3 Multivariable 4.3 SAMPLE EXPECTATION VALUES IN STATISTICS 4.3.1 Sample mean 4.3.2 Sample variance 4.4 PRECISION AND ACCURACY OF A SAMPLE AVERAGE 4.5 COMMONLY USED DENSITY FUNCTIONS 4.5.1 Uniform density function 4.5.2 Binomial density function 4.5.2.1 Bernoulli process 4.5.2.2 Derivation of the Binomial density function 4.5.3 Geometric density function 4.5.4 Poisson density function 4.5.5 Normal ( 4.6 LIMIT THEOREMS AND THEIR APPLICATIONS 4.6.1 Corollary to the de Moivre-Laplace limit theorem 4.6.2 Central limite theorem 4.6.2.1 Demonstration of the Central Limit Theorem 4.7 GENERAL FORMULATION OF THE RELATIVE UNCERTAINTY 4.7.1 Special case of a Bernoulli random process 4.8 CONFIDENCE LEVEL FOR FINITE SAMPLING 4.8.1 Student’s t-distribution 4.8.2 Determination of confidence level and application of the t-distribution 4.9 TEST OF NORMALITY OF DISTRIBUTION 4.9.1 Test of skewness coefficient 4.9.2 Shapiro-Wilk test for normality Chapter 5: Integrals and Associated Variance Reduction Techniques 5.1 INTRODUCTION 5.2 EVALUATION OF INTEGRALS 5.3 VARIANCE REDUCTION TECHNIQUES FOR DETERMINATION OF INTEGRALS 5.3.1 Importance sampling 5.3.2 Control variates technique 5.3.3 Stratified sampling technique 5.3.4 Combined sampling 5.4 REMARKS Chapter 6: Fixed-Source Monte Carlo Particle Transport 6.1 INTRODUCTION 6.2 INTRODUCTION TO THE LINEAR BOLTZMANN EQUATION 6.3 MONTE CARLO METHOD FOR SIMPLIFIED PARTICLE TRANSPORT 6.3.1 Sampling path length 6.3.2 Sampling interaction type 6.3.2.1 Procedure for N (> 2) interaction type 6.3.2.2 Procedure for a discrete random variable with N outcomes of equal probabilities 6.3.3 Selection of scattering angle 6.4 A 1-D MONTE CARLO ALGORITHM 6.5 PERTURBATION VIA CORRELATED SAMPLING 6.6 HOW TO EXAMINE STATISTICAL RELIABILITY OF MONTE CARLO RESULTS 6.7 REMARKS Chapter 7: Variance reduction techniques for fixed-source particle transport 7.1 INTRODUCTION 7.2 OVERVIEW OF VARIANCE REDUCTION FOR FIXED SOURCE PARTICLE TRANSPORT 7.3 PDF BIASING WITH RUSSIAN ROULETTE 7.3.1 Implicit capture or survival biasing with Russian roulette 7.3.1.1 Russian roulette technique 7.3.2 Path-length biasing 7.3.3 Exponential transformation biasing 7.3.4 Forced collision biasing 7.4 PARTICLE SPLITTING WITH RUSSIAN ROULETTE 7.4.1 Geometric splitting 7.4.2 Energy splitting 7.4.3 Angular splitting 7.5 WEIGHT-WINDOW TECHNIQUE 7.6 INTEGRAL BIASING 7.6.1 Importance (adjoint) function methodology 7.6.2 Source biasing based on the importance sampling 7.7 HYBRID METHODOLOGIES 7.7.1 CADIS methodology 7.7.1.1 FW-CADIS technique 7.8 REMARKS Chapter 8: Scoring/Tallying 8.1 INTRODUCTION 8.2 MAJOR PHYSICAL QUANTITIES IN PARTICLE TRANSPORT 8.3 TALLYING IN A STEADY STATE SYSTEM 8.3.1 Collision estimator 8.3.2 Path-length estimator 8.3.3 Surface-crossing estimator 8.3.3.1 Estimation of partial and net currents 8.3.3.2 Estimation of flux on a surface 8.3.4 Analytical estimator 8.4 TIME DEPENDENT TALLYING 8.5 FORMULATION OF TALLIES WHEN VARIANCE REDUCTION USED 8.6 ESTIMATION OF RELATIVE UNCERTAINTY OF TALLIES 8.7 UNCERTAINTY IN A RANDOM VARIABLE DEPENDENT ON OTHER RANDOM VARIABLES 8.8 REMARKS Chapter 9: Geometry and particle tracking 9.1 INTRODUCTION 9.2 COMBINATORIAL GEOMETRY APPROACH 9.2.1 Definition of a surface 9.2.2 Definition of cells 9.2.3 Examples for irregular cells 9.3 DESCRIPTION OF BOUNDARY CONDITIONS 9.4 PARTICLE TRACKING 9.5 REMARKS Chapter 10: Eigenvalue (criticality) Monte Carlo method for particle transport 10.1 INTRODUCTION 10.2 THEORY OF POWER ITERATION FOR EIGENVALUE PROBLEMS 10.3 MONTE CARLO EIGENVALUE CALCULATION 10.3.1 Random variables for sampling fission neutrons 10.3.1.1 Number of fission neutrons 10.3.1.2 Energy of fission neutrons 10.3.1.3 Direction of fission neutrons 10.3.2 Procedure for Monte Carlo Eigenvalue simulation 10.3.2.1 Estimators for sampling fission neutrons 10.3.3 A method to combine the estimators 10.4 ISSUES ASSOCIATED WITH THE STANDARD EIGENVALUE MONTE CARLO SIMULATION PROCEDURE 10.5 DIAGNOSTIC TESTS FOR SOURCE CONVERGENCE 10.5.1 Shannon entropy technique 10.5.1.1 Concept of Shannon entropy 10.5.1.2 Application of the Shannon entropy to the fission neutron source 10.5.2 Center of Mass (COM) technique 10.6 STANDARD EIGENVALUE MONTE CARLO CALCULATION PERFORMANCE, ANALYSIS, SHORTCOMINGS 10.6.1 A procedure for selection of appropriate eigenvalue parameters 10.6.2 Demonstration of the shortcomings of the standard eigenvalue Monte Carlo calculation 10.6.2.1 Example problem 10.6.2.2 Results and analysis 10.7 REMARKS Chapter 11: Fission matrix methods for eigenvalue Monte Carlo simulation 11.1 INTRODUCTION 11.2 DERIVATION OF FORMULATION OF THE FISSION MATRIX METHODOLOGY 11.2.1 Implementation of the FM method - Approach 1 11.2.2 Implementation of the FM method - Approach 2 11.2.2.1 Issues associated with the FMBMC approach 11.3 APPLICATION OF THE FM METHOD - APPROACH 1 11.3.1 Modeling spent fuel facilities 11.3.1.1 Problem description 11.3.1.2 FM coefficient pre-calculation 11.3.1.3 Comparison of RAPID to Serpent - Accuracy and Performance 11.3.2 Reactor cores 11.3.3 A few innovative techniques for generation or correction of FM coeffiicients 11.3.3.1 Geometric similarity 11.3.3.2 Boundary correction 11.3.3.3 Material discontinuity 11.3.4 Simulation of the OECD/NEA benchmark 11.4 DEVELOPMENT OF OTHER FM MATRIX BASED FORMULATIONS 11.5 REMARKS Chapter 12: Vector and parallel processing of Monte Carlo particle transport 12.1 INTRODUCTION 12.2 VECTOR PROCESSING 12.2.0.1 Scalar computer 12.2.0.2 Vector computer 12.2.1 Vector performance 12.3 PARALLEL PROCESSING 12.3.1 Parallel performance 12.3.1.1 Factors affecting the parallel performance 12.4 VECTORIZATION OF THE MONTE CARLO PARTICLE TRANSPORT METHODS 12.5 PARALLELIZATION OF THE MONTE CARLO PARTICLE TRANSPORT METHODS 12.5.1 Other possible parallel Monte Carlo particle transport algorithms 12.6 DEVELOPMENT OF A PARALLEL ALGORITHM USING MPI 12.7 REMARKS Appendix A: Appendix 1 A.1 INTEGER OPERATIONS ON A BINARY COMPUTER Appendix B: Appendix 2 B.1 DERIVATION OF A FORMULATION FOR THE SCATTERING DIRECTION IN A 3 D DOMAIN Appendix C: Appendix 3 C.1 SOLID ANGLE FORMULATION Appendix D: Appendix 4 D.1 ENERGY DEPENDENT NEUTRON NUCLEAR INTERACTIONS IN MONTE CARLO SIMULATION D.2 INTRODUCTION D.3 ELASTIC SCATTERING D.4 INELASTIC SCATTERING D.5 SCATTERING AT THERMAL ENERGIES Appendix E: Appendix 5 E.1 SHANNON ENTROPY E.1.1 Derivation of the Shannon entropy - Approach 1 E.1.2 Derivation of the Shannon entropy - Approach 2 Bibliography Index