دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hisato Kondoh
سری:
ISBN (شابک) : 3031390261, 9783031390265
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 267
[260]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Molecular Basis of Developmental and Stem Cell Regulation: Classical Models Revised (Results and Problems in Cell Differentiation, 72) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی مولکولی تنظیم سلول های تکوینی و بنیادی: مدل های کلاسیک تجدید نظر شده (نتایج و مشکلات در تمایز سلولی، 72) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک مرور کلی از اساس مولکولی تنظیم سلول های بنیادی و رشدی ارائه می دهد. برخی از مدلهای کلاسیک زیستشناسی رشد را بازبینی میکند و آنها را در چارچوب یافتههای تحقیقات سلولهای بنیادی مدرن و زیستشناسی رشدی قرار میدهد. تحقیقات زیستپزشکی به واسطه ابزارهای جدید، عصر جدیدی را آغاز میکند که نمونههایی از آنها با فناوریهای سلولهای بنیادی، تجزیه و تحلیل رونویسی تک سلولی و تصویربرداری زنده با وضوح تک سلولی است. انتشارات مبتنی بر فناوری های پیشرفته اغلب زمینه های بیولوژیکی عمیقی را در اختیار خوانندگان قرار نمی دهند. این خطر کاهش داده های گرانبها را به توصیف های بسیار خاص بدون زمینه های بیولوژیکی کافی ایجاد می کند. از سوی دیگر، زیستشناسی رشدی معاصر، همانطور که در بسیاری از کتابهای درسی نوشته شده است، تا حد قابل توجهی مبتنی بر مفاهیمی است که از چندین دهه پیش بازمیگردد، و لزوماً توسط یافتههای اخیر پشتیبانی نمیشود. با این حال، تصورات کلاسیک رایج، پژوهش های زیست پزشکی مدرن را گمراه می کند. این کتاب نه تنها مدلهای فعلی را برای فرآیندهای رشد ارائه میکند، بلکه مشاهدات کلاسیک را مجدداً تفسیر و ارزیابی میکند، بنابراین دنیای کلاسیک و مدرن زیستشناسی رشد را به هم پیوند میدهد. از مکانیسمهای مولکولی گرفته تا موضوعات بسیار جنینشناسی، پلی بین این رشتههای مختلف ایجاد میکند. این کتاب که برای دانشجویان پیشرفته زیست شناسی رشدی و سلول های بنیادی، محققان و دانش پژوهان تدریس شده است، نقشه راه جدیدی برای زیست شناسی رشدی مدرن و زیست شناسی سلول های بنیادی ارائه می دهد.
This book provides a comprehensive overview of the molecular basis of developmental and stem cell regulation. It revisits some of the classical models of developmental biology and puts them in context with the findings of modern stem cell research and developmental biology. Biomedical research is embarking on a new era due to new tools, which are exemplified by stem cell technologies, single-cell transcriptome analysis, and live imaging at a single-cell resolution. Publications based on cutting-edge technologies do often not provide the readers with deep biological backgrounds. This causes the risk that precious data are reduced to highly specific descriptions without sufficient biological contexts. Contemporary developmental biology on the other hand as written in many textbooks, is to a significant extent based on conceptions backdated many decades ago, and is not necessarily supported by recent findings. Yet, the prevailing classical notions tend to mislead modern biomedical researches. This book not only presents current models for developmental processes but also reinterprets and re-evaluates classic observations, thus linking classical and modern worlds of developmental biology. Spanning from molecular mechanisms to highly embryological matters it provides a bridge between these different disciplines. Written for advanced students of developmental and stem cell biology, researchers and teaching scholars, this book provides a new road map to modern developmental biology and stem cell biology.
Preface Contents Part I: Somatic Cell Development from the Epiblast Chapter 1: The Epiblast and Pluripotent Stem Cell Lines 1.1 The Epiblast 1.2 Mouse ESCs and Their Prototype Embryonal Carcinomas 1.3 Human ESCs Representing a Postimplantation Developmental Stage 1.4 Mouse Epiblast Stem Cells (EpiSCs) References Chapter 2: Different Types of Pluripotent Stem Cells Represent Different Developmental Stages 2.1 The Sox2-Pou5f1 Complex as the Core Transcription Factor (TF) Pair of the Preimplantation Inner Cell Mass and ESCs 2.2 Expression Profiles of the Core TFs in Epiblasts 2.3 Chromatin Immunoprecipitation Sequencing (ChIP-Seq) Analysis of the TF-Binding Genomic Sites in EpiSCs Revealed Zic2 and O... 2.4 Shift of the Core TFs from Sox2-Pou5f1 in mESCs to Zic2-Otx2 in EpiSCs 2.5 Culture Medium-Dependent Distinct Cell States of mESCs and Their In Vitro Derivatives, EpiSCs and Epiblast-Like Cells (Epi... 2.6 From Human ESCs to a Preimplantation Stage References Chapter 3: Gastrulation: Its Principles and Variations 3.1 The Generic Aspects of Gastrulation 3.2 Gastrulation in Chicken Embryos 3.2.1 Primitive Streak and Node Development in Chicken Embryos 3.2.2 Gastrulation at Hensen´s Node in Chicken Embryos 3.2.3 Gastrulation Along the Primitive Streak in Chicken Embryos 3.2.4 Neuromesodermal Progenitors (NMPs) in Chicken Gastrulation Marked by N1 Enhancer Activity 3.3 Gastrulation in the Mouse Embryo 3.3.1 Pregastrulation Embryo Patterning 3.3.2 Early-Stage Gastrulation 3.3.3 Endoderm Gastrulation as Cell Bundles Activated by the Interaction with the Basement Membrane, Modeled in EpiSCs 3.3.4 Neuromesodermal Progenitors (NMPs) in Mouse Embryos 3.3.5 The Regulation of the NMPs 3.3.6 Switching from Mesoderm-Dedicated Progenitors to NMPs During Embryo Axial Elongation 3.4 The Panamniote and Panvertebrate Features of Gastrulation 3.4.1 Primitive Streak-Forming Gastrulation Is Not Common 3.4.2 Gastrulation Manages Two Processes: Head Development via AME Production and Trunk Development via Posterior Axial Tissue... References Chapter 4: How the Brain Develops from the Epiblast: The Node Is Not an Organizer 4.1 The Limitation of Experimental Embryology and the Advantages of Live Imaging-Based Modern Analyses 4.2 Two Initial Paradoxes Concerning the Early-Stage Brain Development 4.3 Long-Range Cell Migration of Anterior Epiblast Cells to Form the Region-Specified Brain Primordium and the Covering Head E... 4.4 The Developmental Outcome of Exogenous Node Grafts Depends on Whether the Graft Position Is in the Anterior or Posterior H... 4.5 Node Graft-Derived AME or Isolated AME Elicits Local Gathering of Anterior Epiblast, Leading to Secondary Brain Tissue Dev... 4.6 The Development of Brain Portions in the Secondary Brain Depends on the Positions of the Grafted AMEs 4.7 Epiblast Brain Field 4.8 The Node Is Not an Organizer 4.9 Conclusion and Future Perspectives References Part II: New Conceptions of Developmental Regulations Chapter 5: Multiple Cell Lineages Give Rise to a Cell Type 5.1 Epigenetic Landscape 5.2 Multiple Myogenic Domains of Embryos Develop into Skeletal Muscle 5.2.1 Trunk Myogenesis Starting from Somites 5.2.2 Cranial Muscles Develop via Distinct Regulatory Pathways 5.2.3 Cranial Muscle Satellite Cells Are Capable of Regenerating Limb Skeletal Muscles 5.3 Multiple Cell Lineages Give Rise to Lens Tissues 5.3.1 Normal Lens Development 5.3.2 Embryonic Neural Retina Developing into Lenses 5.3.3 Lens Development from the Pituitary Precursor under Inhibited Hedgehog Signaling in Zebrafish and Avian Embryos 5.4 Hematopoietic Development Arguing against Cell Lineage-Dependent Cell Specification 5.4.1 The Advantages of the Study of Hematopoietic Development 5.4.2 A Model of Hematopoiesis Based on the Cell Lineage Branching Model 5.4.3 Multiple Developmental Pathways in Hematopoiesis Indicated by Single-Cell Transcriptome Analysis 5.5 Cardiomyocyte Progenitors Develop into Neural Tissues Under Conditions of Disturbed Epigenetic Regulation 5.6 The Synthesis of the Observations References Chapter 6: Organ Regeneration Without Relying on Regeneration-Dedicated Stem Cells 6.1 Liver Regeneration 6.2 Lens Regeneration from the Dorsal Iris of the Newt 6.3 Amputated Limb Regeneration in Newts and Salamanders 6.4 Routes to Central Nervous System Regeneration: Implications from Amphibians and Fish Cases 6.4.1 The Repair of the Injured Spinal Cord by Ependymal Cell Activation 6.4.2 The Regeneration of Retinal Neurons from Müller Cells References Chapter 7: Reciprocal Interactions Between the Epithelium and Mesenchyme in Organogenesis 7.1 The Embryonic Gut Tube as a Platform to Investigate Epithelial and Mesenchymal Interactions 7.2 A Lack of Sox2 Expression in the Anterior Foregut Epithelium Results in the Development of the Trachea Instead of the Esop... 7.3 Mesenchymal Characteristics Accord with Those of the AFG 7.4 Wnt Signaling from the AFG in the Absence of Sox2 Expression Triggers Tbx4 Expression in the Mesenchyme and Allows it to A... References Chapter 8: The Significance of Repressive Processes in Developmental Regulation 8.1 Nervous System Development Escaping from Repressive Signals 8.1.1 A Period of Confusion in Neural Inducer Research 8.1.2 The Discovery of Chordin and Derepression Mechanisms 8.2 Epigenetic Regulation: Differentiating Cranial and Trunk Neural Crest Development Via the Polycomb Group Protein Ezh2 8.2.1 Polycomb Group and Trithorax Group Protein Complexes 8.2.2 Cranial Neural Crest 8.2.3 The Impact of Neural Crest-Specific Inactivation of the PRC2 Component Ezh2 8.3 Sonic Hedgehog Signaling Outputs Counterbalancing Transcriptional Activation and Repression 8.3.1 Sonic Hedgehog Signaling in Limb Development 8.3.2 The Hedgehog Signaling-Dependent Regulation of Gli Transcription Factors 8.3.3 Limb Digit Patterning by Gli Transcription Factor Activities 8.4 Lifting the Gli3 Repressor Activity with miR-133a References Part III: Transcriptional Regulation of Development Chapter 9: Enhancer Arrays Regulating Developmental Genes: Sox2 Enhancers as a Paradigm 9.1 A Brief History of Enhancer Studies 9.2 Screening Sox2 Neural Enhancers Using Reporter Assays in Developing Chicken Embryos 9.3 Neural Enhancers Identified in Chicken Embryos and Conserved in the Mouse Genome 9.4 Conservation of the Sox2 Neural Enhancer Sequences Across Vertebrate Species 9.5 More Neural Enhancers Are Distributed in a Broader Genomic Region 9.6 A Cluster of mESC-Specific Downstream Enhancers Composing the Sox2 Control Region (SCR) 9.7 DNA Looping and the Topologically Associated Domains (TADs) of the Genome; Involvement of Their Subtypes in Cell Type-Spec... 9.8 The DNA Looping Between the Sox2 Gene and the SCR Occurs Independently of TADs 9.9 During the Bursts of Sox2 Transcription, the SCR Enhancer Sequence Does Not Approach Near to the Gene References Chapter 10: Enhancer Activation by Transcription Factors and Underlying Mechanisms 10.1 Two Classes of Enhancers in Developmental Regulation 10.2 Organization of Class I Enhancers 10.2.1 Class I Enhancers Consist of a Core Region That Determines the Cell Type Specificity and a Subsidiary Region to Augment... 10.2.2 The Core Sequence Provides Binding Sites for a Limited Number of TFs That Activate and Determine the Specificity of the... 10.3 The Sox-Partner Code for Cell Specification 10.4 Structural Basis of Sox2-Partner TF-DNA Ternary Complex Formation 10.4.1 Features of the Functional Binding Sequences for Sox2-Pou5f1 and Sox2-Pax6 Hetero Dimers 10.4.2 The Requirement of a Nonstandard Pax6 Binding Sequence for Sox2-Pax6 Cooperative Binding and Transcriptional Activation 10.4.3 DNA Bending in the Sox2-Pax6-DC5 Ternary Complex 10.4.4 Molecular Interfaces for the Cooperative Binding of Partner TFs with Sox2 10.5 ``Super-Enhancers´´ and the Enhancers with Reiterated Binding of Core TFs of the Cells 10.6 How Transcription Factors Search and Stay on the Enhancers: Single-Molecule Live Imaging of Sox2 in the ESC Nuclei 10.7 Sox2-Partner Factor Complexes Search for and Bind to the Chromosomal Target Sites; Evidence from FRAP Analysis References Chapter 11: Molecular Basis of Cell Reprogramming into iPSCs with Exogenous Transcription Factors 11.1 The Discovery of MyoD 11.2 Pioneer Transcription Factors in Developmental Regulation 11.3 Transcription Factor Requirements of iPSC Production from Dermal Fibroblasts 11.4 iPSC-Producing Reprogramming Proceeds in Two Steps 11.5 Initial Attack of the Fibroblast Genome by OSKM Occurs on Nucleosomes in the Closed Chromatin Region 11.6 Sox2 and Pou5f1 Binding to Nucleosomes In Vitro 11.7 DNA Demethylation Process: Insight from B-Cell-Derived iPSC Production 11.8 Trajectories of OSKM Binding from MEFs to iPSCs 11.9 Cellular and Culture Conditions for the Enhanced Derivation of iPSCs 11.9.1 Reprogramming of Neural Stem Cells into iPSCs 11.9.2 The Correspondence Between the Initial OSKM Attack Sites in the Fibroblast Genome and the Sox2-Bound Regions Across Ste... 11.9.3 Neural Crest-Derived Embryonic Fibroblasts as the ``Elite´´ Population in iPSC Reprogramming 11.9.4 iCD1 Culture Medium Supports a High Efficiency of MEF Reprogramming with OSK TFs 11.10 Feedback to the Developmental Regulation: A Promise References Postface Appendix A: Molecular Interactions Involved in the Cooperative Binding of Sox2-Pax6 to the DC5 Enhancer Sequence to Elicit Enh... The DC5 Core Enhancer Sequence Allows the Cooperative Binding of Sox2 and Pax6 Deviation of Bases at Positions 9, 10, and 12 of the Pax6-Binding Site from the Standalone Binding Consensus Is Essential for ... The N-terminal β-Sheet Interacting with the Target DNA Is Involved in Sox2-Pax6 Cooperative Binding The Interface Between Sox2 and Pax6 in the Complex with DC5-like DNA Sequences Inferred from Human Mutant Cases A Quest for DC5-type Consensus DNA Sequences for Sox2-Pax6 Cooperative Binding The Case of DC5-con Derivatives References Appendix B: The List of Genomic Loci Commonly Occupied by Sox2 Among mESCs, EpiSCs, and Neural Progenitors (Section 11.9.2) References Appendix C References Index