ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Modern Physics with Modern Computational Methods: for Scientists and Engineers

دانلود کتاب فیزیک مدرن با روش های محاسباتی مدرن: برای دانشمندان و مهندسان

Modern Physics with Modern Computational Methods: for Scientists and Engineers

مشخصات کتاب

Modern Physics with Modern Computational Methods: for Scientists and Engineers

دسته بندی: فیزیک
ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 9780128177907 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 478 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Modern Physics with Modern Computational Methods: for Scientists and Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فیزیک مدرن با روش های محاسباتی مدرن: برای دانشمندان و مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فیزیک مدرن با روش های محاسباتی مدرن: برای دانشمندان و مهندسان

فیزیک مدرن با روش‌های محاسباتی مدرن، ویرایش سوم ایده‌هایی را ارائه می‌کند که فیزیک مدرن را شکل داده‌اند و مقدمه‌ای بر تحقیقات فعلی در زمینه‌های مختلف فیزیک ارائه می‌دهد. این کتاب که به عنوان متن اولین دوره در فیزیک مدرن پس از یک دوره مقدماتی فیزیک با حساب دیفرانسیل و انتگرال در نظر گرفته شده است، با شرح مختصری و متمرکز از آزمایش‌هایی که منجر به فرمول‌بندی نظریه کوانتومی جدید شد، آغاز می‌شود، در حالی که فصول بعدی عمیق‌تر به فیزیک زیربنایی در این ویرایش جدید، معادلات دیفرانسیل که به وجود می‌آیند با تقریب تفاضل محدود مشتقات یا با استفاده از روش collocation spline به مجموعه‌ای از معادلات خطی یا معادلات ماتریسی تبدیل می‌شوند. برنامه های متلب برای حل معادلات مقدار ویژه برای یک ذره در یک چاه محدود و نوسان ساز هارمونیک ساده و برای حل معادله شعاعی هیدروژن توضیح داده شده است. پایین ترین راه حل های این مسائل با استفاده از MATLAB ترسیم شده و اهمیت فیزیکی این راه حل ها مورد بحث قرار گرفته است. هر یک از فصل های بعدی با شرح تحولات مدرن به پایان می رسد.


توضیحاتی درمورد کتاب به خارجی

Modern Physics with Modern Computational Methods, Third Edition presents the ideas that have shaped modern physics and provides an introduction to current research in the different fields of physics. Intended as the text for a first course in modern physics following an introductory course in physics with calculus, the book begins with a brief and focused account of experiments that led to the formulation of the new quantum theory, while ensuing chapters go more deeply into the underlying physics. In this new edition, the differential equations that arise are converted into sets of linear equation or matrix equations by making a finite difference approximation of the derivatives or by using the spline collocation method. MATLAB programs are described for solving the eigenvalue equations for a particle in a finite well and the simple harmonic oscillator and for solving the radial equation for hydrogen. The lowest-lying solutions of these problems are plotted using MATLAB and the physical significance of these solutions are discussed. Each of the later chapters conclude with a description of modern developments.



فهرست مطالب

Front-Matter_2021_Modern-Physics-with-Modern-Computational-Methods
Copyright_2021_Modern-Physics-with-Modern-Computational-Methods
Dedication_2021_Modern-Physics-with-Modern-Computational-Methods
	Dedication
		About the dedication
		Dedication
Contents_2021_Modern-Physics-with-Modern-Computational-Methods
	Contents
Preface_2021_Modern-Physics-with-Modern-Computational-Methods
	Preface
		This new third edition
		Acknowledgments
		Supplements to the text
Introduction_2021_Modern-Physics-with-Modern-Computational-Methods
	Introduction
		I.1 The concepts of particles and waves
			I.1.1 The variables of a moving particle
			I.1.2 Elementary properties of waves
				Traveling waves
				Standing waves
				The Fourier theorem
				Representation of waves using exponentials
			I.1.3 Interference and diffraction phenomena
				Electromagnetic waves
		I.2 An overview of quantum physics
		Basic equations
			Variables of particles
			Properties of waves
			Electromagnetic radiation
		Summary
		Suggestions for further reading
		Questions
		Problems
Chapter-1---The-wave-particle-d_2021_Modern-Physics-with-Modern-Computationa
	1 The wave-particle duality
		1.1 The particle model of light
			1.1.1 The photoelectric effect
			1.1.2 The absorption and emission of light by atoms
				1.1.2.1 Principles of atomic spectra
				1.1.2.2 The Bohr model of the atom
				1.1.2.3 The energy levels and spectra of hydrogen
			1.1.3 The Compton effect
		1.2 The wave model of radiation and matter
			1.2.1 X-ray scattering
			1.2.2 Electron waves
		Suggestions for further reading
		Basic equations
			Photoelectric effect
			Emission and absorption of radiation by atoms
			Wave properties of radiation and matter
		Summary
		Questions
		Problems
Chapter-2---The-Schr-dinger-wave-_2021_Modern-Physics-with-Modern-Computatio
	2 The Schrödinger wave equation
		2.1 The wave equation
		2.2 Probabilities and average values
		2.3 The finite potential well
		2.4 The simple harmonic oscillator
		2.5 Time evolution of the wave function
		Suggestion for further reading
		Basic equations
			The wave equation
			Solutions of Schrödinger time-independent equation
			Time evolution of wave function
		Summary
		Questions
		Problems
Chapter-3---Operators-and-wa_2021_Modern-Physics-with-Modern-Computational-M
	3 Operators and waves
		3.1 Observables, operators, and eigenvalues
		3.2 The finite well and harmonic oscillator using finite differences
		3.3 The finite well and harmonic oscillator with spline collocation
		3.4 Electron scattering
			3.4.1 Scattering from a potential step
			3.4.2 Barrier penetration and tunneling
			3.4.3 T-matrices
			3.4.4 Scattering from more complex barriers
		3.5 The Heisenberg uncertainty principle
			3.5.1 Wave packets and the uncertainty principle
			3.5.2 Average value of the momentum and the energy
		Suggestion for further reading
		Basic equations
			Observables, operators, and eigenvalues
			Electron scattering
			The Heisenberg uncertainty principle
		Summary
		Questions
		Problems
Chapter-4---The-hydrogen-at_2021_Modern-Physics-with-Modern-Computational-Me
	4 The hydrogen atom
		4.1 The Gross structure of hydrogen
			4.1.1 The Schrödinger equation in three dimensions
			4.1.2 The energy levels of hydrogen
			4.1.3 The wave functions of hydrogen
			4.1.4 Probabilities and average values in three dimensions
			4.1.5 The intrinsic spin of the electron
		4.2 Radiative transitions
			4.2.1 The Einstein A and B coefficients
			4.2.2 Transition probabilities
			4.2.3 Selection rules
		4.3 The fine structure of hydrogen
			4.3.1 The magnetic moment of the electron
			4.3.2 The Stern-Gerlach experiment
			4.3.3 The spin of the electron
			4.3.4 The addition of angular momentum
				Rule for addition of angular momenta
			4.3.5 * The fine structure
			4.3.6 * The Zeeman effect
		Suggestion for further reading
		Basic equations
			Wave function for hydrogen
			Probabilities and average values
			Transition probabilities
			The fine structure of hydrogen
		Summary
		Questions
		Problems
Chapter-5---Many-electron-at_2021_Modern-Physics-with-Modern-Computational-M
	5 Many-electron atoms
		5.1 The independent-particle model
			5.1.1 Antisymmetric wave functions and the Pauli exclusion principle
			5.1.2 The central-field approximation
		5.2 Shell structure and the periodic table
		5.3 The LS term energies
		5.4 Configurations of two electrons
			5.4.1 Configurations of equivalent electrons
			5.4.2 Configurations of two nonequivalent electrons
		5.5 The Hartree-Fock method
			5.5.1 The Hartree-Fock applet
			5.5.2 The size of atoms and the strength of their interactions
		5.6 Further developments in atomic theory
		Suggestions for further reading
		Basic equations
			Definition of atomic units
			Atomic unit of distance
			Atomic unit of energy
		Summary
		Questions
		Problems
Chapter-6---The-emergence-of-masers_2021_Modern-Physics-with-Modern-Computat
	6 The emergence of masers and lasers
		6.1 Radiative transitions
		6.2 Laser amplification
		6.3 Laser cooling
		6.4 * Magneto-optical traps
		Suggestions for further reading
		Basic equations
			Hamiltonian of outer electron in the magnetic field of nucleus
			Total angular momentum of electron and nucleus
			The z-component of magnetic moment of outer electron
			The energy of the outer electron due the magnetic field B
		Summary
		Questions
		Problems
Chapter-7---Diatomic-molecu_2021_Modern-Physics-with-Modern-Computational-Me
	7 Diatomic molecules
		7.1 The hydrogen molecular ion
		7.2 The Hartree-Fock method
		7.3 Exoplanets
		References
		Summary
		Questions
Chapter-8---Statistical-phys_2021_Modern-Physics-with-Modern-Computational-M
	8 Statistical physics
		8.1 The nature of statistical laws
		8.2 An ideal gas
		8.3 Applications of Maxwell-Boltzmann statistics
			8.3.1 Maxwell distribution of the speeds of gas particles
			8.3.2 Black body radiation
		8.4 Entropy and the laws of thermodynamics
			8.4.1 The four laws of thermodynamics
		8.5 A perfect quantum gas
		8.6 Bose-Einstein condensation
		8.7 Free-electron theory of metals
		Suggestions for further reading
		Basic equations
			Maxwell-Boltzmann statistics
			Applications of Maxwell-Boltzmann statistics
			Entropy and the laws of thermodynamics
			Quantum statistics
			Free-electron theory of metals
		Summary
		Questions
		Problems
Chapter-9---Electronic-structure-_2021_Modern-Physics-with-Modern-Computatio
	9 Electronic structure of solids
		9.1 The Bravais lattice
		9.2 Additional crystal structures
			9.2.1 The diamond structure
			9.2.2 The hexagonal close-packed structure
			9.2.3 The sodium chloride structure
		9.3 The reciprocal lattice
		9.4 Lattice planes
		9.5 Bloch's theorem
			Bloch's theorem
			Alternate form of Bloch's theorem
		9.6 Diffraction of electrons by an ideal crystal
		9.7 The band gap
		9.8 Classification of solids
			9.8.1 The band picture
				Insulators
				Semiconductors
				Metals
				Graphene
				Carbon nanotubes
			9.8.2 The bond picture
				Covalent bonding
				Ionic bonding
				Molecular crystals
				Hydrogen-bonded crystals
				Metals
		Suggestions for further reading
		Basic equations
			Bravais lattice
			Reciprocal lattice
			Bloch's theorem
			Scattering of electrons by a crystal
		Summary
		Questions
		Problems
Chapter-10---Charge-carriers-in-sem_2021_Modern-Physics-with-Modern-Computat
	10 Charge carriers in semiconductors
		10.1 Density of charge carriers in semiconductors
		10.2 Doped crystals
		10.3 A few simple devices
			10.3.1 The p-n junction
			10.3.2 Solar cells
			10.3.3 Bipolar transistors
			10.3.4 Junction field-effect transistors (JFET)
			10.3.5 MOSFETs
		Suggestions for further reading
		Summary
		Questions
Chapter-11---Semiconductor-la_2021_Modern-Physics-with-Modern-Computational-
	11 Semiconductor lasers
		11.1 Motion of electrons in a crystal
		11.2 Band structure of semiconductors
			11.2.1 Conduction bands
			11.2.2 Valence bands
			11.2.3 Optical transitions
		11.3 Heterostructures
			11.3.1 Properties of heterostructures
			11.3.2 Experimental methods
			11.3.3 Theoretical methods
		11.4 Quantum wells
		11.5 Quantum barriers
			11.5.1 Scattering of electrons by potential barriers
			11.5.2 Light waves
			11.5.3 Reflection and transmission by an interface
			11.5.4 The Fabry-Perot laser
		11.6 Phenomenological description of diode lasers
			11.6.1 The rate equation
			11.6.2 Well below threshold
			11.6.3 The laser threshold
			11.6.4 Above threshold
		Suggestions for further reading
		Basic equations
			Quantum wells in heterostructures
			Quantum barriers
			Reflection and transmission of light
			Phenomenological description of diode lasers
		Summary
		Questions
		Problems
Chapter-12---The-special-theory-of_2021_Modern-Physics-with-Modern-Computati
	12 The special theory of relativity
		12.1 Galilean transformations
		12.2 The relative nature of simultaneity
		12.3 Lorentz transformation
			12.3.1 The transformation equations
			12.3.2 Lorentz contraction
			12.3.3 Time dilation
			12.3.4 The invariant space-time interval
			12.3.5 Addition of velocities
			12.3.6 The Doppler effect
		12.4 Space-time diagrams
			12.4.1 Particle motion
			12.4.2 Lorentz transformations
			12.4.3 The light cone
		12.5 Four-vectors
		Suggestions for further reading
		Basic equations
			Galilean transformations
			The relativistic transformations
			Four vectors
		Summary
		Questions
		Problems
Chapter-13---The-relativistic-wave-equati_2021_Modern-Physics-with-Modern-Co
	13 The relativistic wave equations and general relativity
		13.1 Momentum and energy
		13.2 Conservation of energy and momentum
		13.3 * The Dirac theory of the electron
			13.3.1 Review of the Schrödinger theory
			13.3.2 The Klein-Gordon equation
			13.3.3 The Dirac equation
			13.3.4 Plane wave solutions of the Dirac equation
		13.4 * Field quantization
		13.5 The general theory of relativity
			13.5.1 The principle of equivalence
			13.5.2 The path of a freely-falling body in curvilinear coordinates
			13.5.3 Relations between partial derivatives of gμν and Γλμν
			13.5.4 A slow moving particle in a weak gravitational field
			13.5.5 Vectors and tensors
			13.5.6 Transformation of the affine connection
			13.5.7 Covariant differentiation
			13.5.8 The parallel transport of a vector along a curve
			13.5.9 The curvature tensor
			13.5.10 Einstein's field equations
		Suggestions for further reading
		Basic equations
			Definitions
			The Dirac theory of the electron
		Summary
		Questions
		Problems
Chapter-14---Particle-physi_2021_Modern-Physics-with-Modern-Computational-Me
	14 Particle physics
		14.1 Leptons and quarks
		14.2 Conservation laws
			14.2.1 Energy, momentum, and charge
			14.2.2 Lepton number
			14.2.3 Baryon number
			14.2.4 Strangeness
			14.2.5 Charm, beauty, and truth
		14.3 Spatial symmetries
			14.3.1 Angular momentum of composite systems
			14.3.2 Parity
		14.4 Isospin and color
			14.4.1 Isospin
				14.4.1.1 Quarks
				14.4.1.2 The light mesons
				14.4.1.3 The light baryons
				14.4.1.4 Pion-nucleon scattering
			14.4.2 Color
		14.5 Feynman diagrams
			14.5.1 Electromagnetic interactions
			14.5.2 Weak interactions
			14.5.3 Strong interactions
		14.6 The R(3) and SU(3) symmetry groups
			14.6.1 The rotation group in three dimensions
			14.6.2 The SU(3) symmetry group
			14.6.3 The representations of SU(3)
				14.6.3.1 The flavor SU(3) symmetry
				14.6.3.2 The color SU(3) symmetry
		14.7 * Gauge invariance and the electroweak theory
		14.8 Spontaneous symmetry breaking and the discovery of the Higgs
		14.9 Supersymmetry
			14.9.1 Symmetries in physics
			14.9.2 The Poincaré algebra
			14.9.3 The supersymmetry algebra
		Suggestions for further reading
		Basic equations
			Leptons and quarks
			Definition of hypercharge and isospin
			Feynman diagrams
			SU(3) symmetry
		Summary
		Questions
		Problems
Chapter-15---Nuclear-physi_2021_Modern-Physics-with-Modern-Computational-Met
	15 Nuclear physics
		15.1 Properties of nuclei
			15.1.1 Nuclear sizes
			15.1.2 Binding energies
			15.1.3 The semiempirical mass formula
		15.2 Decay processes
			15.2.1 Alpha decay
			15.2.2 The β-stability valley
			15.2.3 Gamma decay
			15.2.4 Natural radioactivity
		15.3 The nuclear shell model
			15.3.1 Nuclear potential wells
			15.3.2 Nucleon states
			15.3.3 Magic numbers
			15.3.4 The spin-orbit interaction
		15.4 Excited states of nuclei
		Suggestions for further reading
		Basic equations
			Binding energy
			The semiempirical formula
			Magic numbers
		Summary
		Questions
		Problems
Index_2021_Modern-Physics-with-Modern-Computational-Methods
	Index
Appendix-A---Constants-and-convers_2021_Modern-Physics-with-Modern-Computati
	A Constants and conversion factors
		Constants
		Particle masses
		Conversion factors
Appendix-B---Atomic-masse_2021_Modern-Physics-with-Modern-Computational-Meth
	B Atomic masses
Appendix-C---Introduction-to-M_2021_Modern-Physics-with-Modern-Computational
	C Introduction to MATLAB®
		Creating a vector
		Plotting functions
		Using Arrays in MATLAB
		Using functions in MATLAB
Appendix-D---Solution-of-the-oscill_2021_Modern-Physics-with-Modern-Computat
	D Solution of the oscillator equation
Appendix-E---The-average-value-of-t_2021_Modern-Physics-with-Modern-Computat
	E The average value of the momentum
Appendix-F---The-Hartree-Fock-_2021_Modern-Physics-with-Modern-Computational
	F The Hartree-Fock applet
Appendix-G---Integrals-that-arise-in-s_2021_Modern-Physics-with-Modern-Compu
	G Integrals that arise in statistical physics
		References
		Further reading




نظرات کاربران