دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Luca Salasnich. Francesco Lorenzi
سری: UNITEXT for Physics
ISBN (شابک) : 9783031676703, 9783031676710
ناشر: Springer Nature Switzerland
سال نشر: 2024
تعداد صفحات: 255
[261]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Modern Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to the Second Edition Preface Contents 1 Classical Statistical Mechanics 1.1 Kinetic Theory of Gases 1.1.1 Maxwell Distribution of Velocities 1.1.2 Maxwell-Boltzmann Distribution of Energies 1.1.3 Single-Particle Density of States 1.2 Statistical Ensembles of Gibbs 1.2.1 Microcanonical Ensemble 1.2.2 Canonical Ensemble 1.2.3 Grand Canonical Ensemble 1.2.4 Many-Particle Density of States 1.3 Heat Capacity of Gases and Solids 2 Special and General Relativity 2.1 Electromagnetic Waves 2.1.1 Lorentz Invariance of D'Alembert Operator 2.2 Lorentz Transformations 2.2.1 Thought Experiment with Light Bulb 2.3 Einstein Postulates 2.4 Relativistic Kinematics 2.4.1 Length Contraction 2.4.2 Time Dilation 2.4.3 Transformation of Velocities 2.5 Relativistic Dynamics 2.5.1 Mechanical Work and Relativistic Energy 2.5.2 Relativistic Energy and Linear Momentum 2.5.3 Non-Relativistic Limit of the Energy 2.6 Basic Concepts of General Relativity 2.6.1 Spacetime Interval 2.6.2 Curved Manifolds 2.6.3 Equivalence Principle and Einstein Equations 2.6.4 Non-Relativistic Limit of General Relativity 2.6.5 Predictions of General Relativity 3 Quantum Properties of Light 3.1 Black-Body Radiation 3.1.1 Derivation of Planck's Law 3.2 Photoelectric Effect 3.2.1 Theoretical Explanation 3.3 Energy and Linear Momentum of a Photon 3.4 Compton Effect 3.4.1 Theoretical Explanation 3.5 Pair Production 4 Quantum Properties of Matter 4.1 Heat Capacity of Solids: Einstein vs Debye 4.2 Energy Spectra of Atoms 4.2.1 Energy Spectrum of Hydrogen Atom 4.3 Bohr's Model of Hydrogen Atom 4.3.1 Derivation of Bohr's Formula 4.4 Energy Levels and Photons 4.5 Electromagnetic Transitions 4.6 Einstein Coefficients 4.7 Life-Time of an Atomic State 4.8 Natural Linewidth 4.8.1 Collisional Broadening 4.8.2 Doppler Broadening 4.9 Old Quantum Mechanics of Bohr, Wilson and Sommerfeld Further Reading 5 The Schrödinger Equation 5.1 De Broglie Wavelength 5.1.1 Explaining the Bohr Quantization 5.2 Wave Mechanics of Schrödinger 5.2.1 Derivation of Schrödinger's Equation 5.3 Double-Slit Experiment with Electrons 5.4 Formal Quantization Rules 5.4.1 Schrödinger Equation for a Free Particle 5.4.2 Schrödinger Equation for a Particle in an External Potential 5.5 Madelung Transformation 5.6 Stationary Schrödinger Equation 5.6.1 Properties of the Hamiltonian Operator 5.6.2 The Energy Levels are Real Numbers 5.6.3 Orthogonality of Eigenfunctions 5.6.4 Lebesgue Space of Square-Integrable Wave Functions 6 Solvable Problems 6.1 One-Dimensional Square-Well Potential 6.2 One-Dimensional Harmonic Potential 6.2.1 Factorization Method 6.2.2 Properties of Number Operator 6.3 One-Dimensional Scattering 6.3.1 Step Potential Barrier 6.3.2 Rectangular Potential Barrier 6.4 One-Dimensional Double-Well Potential 6.4.1 One-Dimensional Double-Square-Well Potential 6.5 WKB Method 6.5.1 Quantum Tunneling 6.5.2 Energy Spectrum 6.6 Three-Dimensional Separable Potential 6.6.1 Three-Dimensional Harmonic Potential 7 Axiomatization 7.1 Matrix Mechanics and Commutation Rules 7.1.1 Momentum Representation 7.2 Time Evolution Operator 7.3 Axioms of Quantum Mechanics 7.4 Heisenberg Uncertainty Principle 7.4.1 Uncertainty Principle for Non-Commuting Operators 7.5 Time-Independent Perturbation Theory 7.6 Time-Dependent Perturbation Theory and Fermi Golden Rule 7.7 Variational Principle 8 Electrons and Atoms 8.1 Electron in the Hydrogen Atom 8.1.1 Schrödinger Equation in Spherical Polar Coordinates 8.1.2 Selection Rules 8.2 Pauli Exclusion Principle and the Spin 8.2.1 Semi-Integer and Integer Spin: Fermions and Bosons 8.3 The Dirac Equation 8.3.1 The Pauli Equation and the Spin 8.3.2 Dirac Equation with a Central Potential 8.3.3 Relativistic Hydrogen Atom and Fine Splitting 8.3.4 Relativistic Corrections to the Schrödinger Hamiltonian 8.4 Spin Properties in a Magnetic Field 8.5 Stark Effect 8.6 Zeeman Effect 8.6.1 Strong-Field Zeeman Effect 8.6.2 Weak-Field Zeeman Effect 9 Many-Body Systems 9.1 Identical Quantum Particles 9.1.1 Spin-Statistics Theorem 9.2 Non-Interacting Identical Particles 9.2.1 Atomic Shell Structure and the Periodic Table of the Elements 9.3 Interacting Identical Particles 9.3.1 Electrons in Atoms and Molecules 9.4 The Hartree-Fock Method 9.4.1 Hartree for Bosons 9.4.2 Hartree-Fock for Fermions 10 Quantum Statistical Mechanics 10.1 Quantum Statistical Ensembles 10.1.1 Quantum Microcanonical Ensemble 10.1.2 Quantum Canonical Ensemble 10.1.3 Quantum Grand Canonical Ensemble 10.2 Bosons and Fermions at Finite Temperature 10.2.1 Gas of Photons at Thermal Equilibrium 10.2.2 Gas of Massive Bosons at Thermal Equilibrium 10.2.3 Gas of Non-Interacting Fermions at Zero Temperature 10.3 Connection Between Quantum Statistical Ensembles 10.3.1 Grand Potential and Average Number Density 10.3.2 Canonical Ensemble and Number Density 11 Quantum Information 11.1 The Qubit 11.1.1 Qubits and Measurements 11.1.2 Single Qubit Quantum Gates 11.1.3 Multiple Qubits 11.1.4 Quantum Gates for 2-Qubits 11.2 Entanglement 11.2.1 Examples of Separable and Entangled states 11.2.2 CNOT Gate and Entanglement 11.2.3 Pure and Mixed States 11.2.4 Von Neumann Entropy 11.2.5 State of a System: Partial Trace 11.2.6 Entanglement Entropy 11.2.7 No-Cloning Theorem 11.2.8 Quantum Teleportation 11.3 Quantum Computing 11.3.1 Deutsch-Jozsa Algorithm 11.3.2 A Note on Quantum Hardware 12 Path Integral Formulation 12.1 Path Integral Construction of the Propagator 12.1.1 Wick Rotation and Thermodynamics 12.2 Saddle-Point and Stationary Phase 12.2.1 Gaussian Integrals 12.2.2 Free Particle 12.2.3 Particle in a Harmonic Potential 12.3 Quantum Tunneling 12.4 Path Integral for the Spin Appendix A Dirac Delta Function A.1 The Heaviside Step Function A.2 The Strange Delta Function of Dirac A.2.1 Dirac Function and the Integrals A.3 Dirac Function in D Spatial Dimensions Appendix B Complex Numbers B.1 Set of Complex Numbers B.2 Gauss Plane B.2.1 Polar Representation B.3 Euler Formula B.3.1 Proof of the Euler Formula B.3.2 De Moivre Formula B.4 Fundamental Theorem of Algebra B.5 Complex Functions B.6 Gaussian and Fresnel integrals Appendix C Fourier Transform C.1 Geometric and Taylor Series C.2 Fourier Series C.2.1 Complex Representation of the Fourier Series C.3 Fourier Integral C.3.1 Properties of the Fourier Transform C.3.2 Fourier Transform and Uncertainty Theorem C.4 Fourier Transform of Space-Time Functions Appendix D Differential Equations D.1 First-Order ODE D.1.1 Separation of Variables D.2 Second-Order ODE D.3 Newton Law as a Second-Order ODE D.4 Partial Differential Equations D.4.1 Wave Equation D.4.2 Diffusion Equation Appendix E Scattering Theory E.1 Schrödinger Problem of Two Colliding Particles E.2 Scattering Amplitude and Born Approximation E.3 Cross-Section and S-Wave Scattering Length *-20ptReferences Index