ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Modeling and control of engines and drivelines

دانلود کتاب مدل سازی و کنترل موتورها و پیشرانه ها

Modeling and control of engines and drivelines

مشخصات کتاب

Modeling and control of engines and drivelines

دسته بندی: حمل و نقل: اتومبیل ، موتورسیکلت
ویرایش:  
نویسندگان: ,   
سری: Automotive series (Wiley) 
ISBN (شابک) : 9781118536193, 1118479998 
ناشر: John Wiley & Sons Inc 
سال نشر: 2014 
تعداد صفحات: 589 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 48 مگابایت 

قیمت کتاب (تومان) : 47,000



کلمات کلیدی مربوط به کتاب مدل سازی و کنترل موتورها و پیشرانه ها: حمل و نقل، تجهیزات خودرو و تراکتور، عیب یابی خودرو



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Modeling and control of engines and drivelines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدل سازی و کنترل موتورها و پیشرانه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مدل سازی و کنترل موتورها و پیشرانه ها

راهنمای مرجع برای مدل‌سازی، تحلیل و کنترل موتورها و خطوط محرکه برای مهندسان و مقدمه‌ای برای دانشجویان در زمینه‌های مدل‌سازی، تحلیل و کنترل موتورها و خطوط محرکه. دینامیک اساسی موتورهای احتراق داخلی و خطوط محرکه را پوشش می دهد. در مورد اهدافی که سیستم طراحی کنترل موتور برای آنها هدف قرار می دهد بحث می کند و اینکه چگونه می توان به این اهداف دست یافت. مجموعه‌ای از مدل‌های استاندارد را ارائه می‌دهد و شامل مثال‌ها و مطالعات موردی است. شامل یک نمای کلی از وسایل نقلیه هیبریدی و پیشرانه است. هدف این کتاب ارائه مجموعه ای از مدل های استاندارد و ارائه یک ماده مرجع برای مهندسان در این زمینه است. تأثیر متقابل بین موتور و سیستم‌های پیشرانه، و ادغام بین سیستم‌هایی را که برای مهندسی موفقیت‌آمیز یک پیشرانه کامل خودرو مورد نیاز است، برجسته می‌کند. علاوه بر این، همچنین تاکید می کند که سیستم ها باید به گونه ای طراحی شوند که بتوان آنها را در طول عمر خودرو نگهداری و تشخیص داد، که این نیز یک وظیفه مهندسی مهم در توسعه سیستم های کنترل است.-- ادامه مطلب...
چکیده:
سیستم های کنترل نقش مهمی در عملکرد خودروهای مدرن با توجه به دستیابی به اهداف کاهش آلایندگی و مصرف سوخت پایین. برای دستیابی به این اهداف، مدل‌سازی، شبیه‌سازی و تحلیل به ابزار استانداردی برای توسعه سیستم‌های کنترل در صنعت خودرو تبدیل شده است. بیشتر بخوانید...

توضیحاتی درمورد کتاب به خارجی

A reference guide to modeling, analysis, and control of engines and drivelines for engineers and an introduction for students in the areas of modeling, analysis, and control of engines and drivelines; Covers the basic dynamics of internal combustion engines and drivelines; Discusses the goals that engine control design system aims for, and how these targets can be achieved; Provides a set of standard models and includes examples and case studies; Includes an overview of hybrid vehicles and powertrains. The aim of the book is to provide a set of standard models and serve as a reference material for engineers in the field. Highlights the interplay between the engine and driveline systems, and the integration between systems that is needed for successfully engineering a complete vehicle powertrain. In addition it also emphasises that systems should be designed such that they can be maintained and diagnosed over the vehicle life time, which is also an important engineering task in the development of control systems.-- Read more...
Abstract:
Control systems have come to play an important role in the performance of modern vehicles with regards to meeting goals on low emissions and low fuel consumption. To achieve these goals, modeling, simulation, and analysis have become standard tools for the development of control systems in the automotive industry. Read more...


فهرست مطالب

Content: Preface xvii    Series Preface xix     Part I VEHICLE - PROPULSION FUNDAMENTALS     1 Introduction 3     1.1 Trends 4     1.1.1 Energy and Environment 4     1.1.2 Downsizing 4     1.1.3 Hybridization 6     1.1.4 Driver Support Systems and Optimal Driving 6     1.1.5 Engineering Challenges 8     1.2 Vehicle Propulsion 8     1.2.1 Control Enabling Optimal Operation of Powertrains 9     1.2.2 Importance of Powertrain Modeling and Models 10     1.2.3 Sustainability of Model Knowledge 11     1.3 Organization of the Book 11     2 Vehicle 15     2.1 Vehicle Propulsion Dynamics 15     2.2 Driving Resistance 16     2.2.1 Aerodynamic Drag 17     2.2.2 Cooling Drag and Active Air-Shutters 18     2.2.3 Air Drag When Platooning 19     2.2.4 Rolling Resistance - Physical Background 20     2.2.5 Rolling Resistance-Modeling 21     2.2.6 Wheel Slip (Skid) 24     2.2.7 Rolling Resistance - Including Thermal Modeling 25     2.2.8 Gravitation 27     2.2.9 Relative Size of Components 28     2.3 Driving Resistance Models 28     2.3.1 Models for Driveline Control 29     2.3.2 Standard Driving Resistance Model 30     2.3.3 Modeling for Mission Analysis 31     2.4 Driver Behavior and Road Modeling 32     2.4.1 Simple Driver Model 32     2.4.2 Road Modeling 33     2.5 Mission Simulation 34     2.5.1 Methodology 34     2.6 Vehicle Characterization/Characteristics 34     2.6.1 Performance Measures 35     2.7 Fuel Consumption 36     2.7.1 Energy Density Weight 36     2.7.2 From Tank to Wheel - Sankey Diagram 37     2.7.3 Well-to-Wheel Comparisons 38     2.8 Emission Regulations 39     2.8.1 US and EU Driving Cycles and Regulations 39     3 Powertrain 45     3.1 Powertrain Architectures 45     3.1.1 Exhaust Gas Energy Recovery 47     3.1.2 Hybrid Powertrains 47     3.1.3 Electrification 48     3.2 Vehicle Propulsion Control 50     3.2.1 Objectives of Vehicle Propulsion Control 50     3.2.2 Implementation Framework 51     3.2.3 Need for a Control Structure 52     3.3 Torque-Based Powertrain Control 52     3.3.1 Propagation of Torque Demands and Torque Commands 52     3.3.2 Torque-Based Propulsion Control - Driver Interpretation 54     3.3.3 Torque-Based Propulsion Control - Vehicle Demands 55     3.3.4 Torque-Based Propulsion Control - Driveline management 55     3.3.5 Torque-Based Propulsion Control - Driveline-Engine Integration 55     3.3.6 Handling of Torque Requests - Torque Reserve and Interventions 56     3.4 Hybrid Powertrains 58     3.4.1 ICE Handling 58     3.4.2 Motor Handling 59     3.4.3 Battery Management 59     3.5 Outlook and Simulation 60     3.5.1 Simulation Structures 60     3.5.2 Drive/Driving Cycle 60     3.5.3 Forward Simulation 61     3.5.4 Quasi-Static Inverse Simulation 61     3.5.5 Tracking 61     3.5.6 Inverse Dynamic Simulation 62     3.5.7 Usage and Requirements 64     3.5.8 Same Model Blocks Regardless of Method 65     Part II ENGINE - FUNDAMENTALS     4 Engine - Introduction 69     4.1 Air, Fuel, and Air/Fuel Ratio 69     4.1.1 Air 69     4.1.2 Fuels 70     4.1.3 Stoichiometry and (A/F) Ratio 71     4.2 Engine Geometry 73     4.3 Engine Performance 74     4.3.1 Power, Torque, and Mean Effective Pressure 74     4.3.2 Efficiency and Specific Fuel Consumption 75     4.3.3 Volumetric Efficiency 76     4.4 Downsizing and Turbocharging 77     4.4.1 Supercharging and Turbocharging 78     5 Thermodynamics and Working Cycles 81     5.1 The Four-Stroke Cycle 81     5.1.1 Important Engine Events in the Cycle 84     5.2 Thermodynamic Cycle Analysis 85     5.2.1 Ideal Models of Engine Processes 86     5.2.2 Derivation of Cycle Efficiencies 89     5.2.3 Gas Exchange and Pumping Work 91     5.2.4 Residual Gases and Volumetric Efficiency for Ideal Cycles 93     5.3 Efficiency of Ideal Cycles 98     5.3.1 Load, Pumping Work, and Efficiency 99     5.3.2 (A/F) Ratio and Efficiency 100     5.3.3 Differences between Ideal and Real Cycles 103     5.4 Models for In-Cylinder Processes 105     5.4.1 Single-Zone Models 105     5.4.2 Heat Release and Mass Fraction Burned Analysis 107     5.4.3 Characterization of Mass Fraction Burned 109     5.4.4 More Single-Zone Model Components 111     5.4.5 A Single-zone Cylinder Pressure Model 113     5.4.6 Multi-zone Models 114     5.4.7 Applications for Zero-dimensional Models 117     6 Combustion and Emissions 119     6.1 Mixture Preparation and Combustion 119     6.1.1 Fuel Injection 119     6.1.2 Comparing the SI and CI Combustion Process 120     6.2 SI Engine Combustion 121     6.2.1 SI Engine Cycle-to-Cycle Variations 121     6.2.2 Knock and Autoignition 122     6.2.3 Autoignition and Octane Number 124     6.3 CI Engine Combustion 126     6.3.1 Autoignition and Cetane Number 126     6.4 Engine Emissions 128     6.4.1 General Trends for Emission Formation 128     6.4.2 Pollutant Formation in SI Engines 130     6.4.3 Pollutant Formation in CI Engines 134     6.5 Exhaust Gas Treatment 137     6.5.1 Catalyst Efficiency, Temperature, and Light-Off 137     6.5.2 SI Engine Aftertreatment, TWC 139     6.5.3 CI Engine Exhaust Gas Treatment 140     6.5.4 Emission Reduction and Controls 142     Part III ENGINE - MODELING AND CONTROL     7 Mean Value Engine Modeling 145     7.1 Engine Sensors and Actuators 146     7.1.1 Sensor, System, and Actuator Responses 146     7.1.2 Engine Component Modeling 149     7.2 Flow Restriction Models 149     7.2.1 Incompressible Flow 151     7.2.2 Compressible Flow 154     7.3 Throttle Flow Modeling 156     7.3.1 Throttle Area and Discharge Coefficient 157     7.4 Mass Flow Into the Cylinders 159     7.4.1 Models for Volumetric Efficiency 159     7.5 Volumes 162     7.6 Example - Intake Manifold 166     7.7 Fuel Path and (A/F) Ratio 168     7.7.1 Fuel Pumps, Fuel Rail, Injector Feed 168     7.7.2 Fuel Injector 169     7.7.3 Fuel Preparation Dynamics 171     7.7.4 Gas Transport and Mixing 174     7.7.5 A/F Sensors 174     7.7.6 Fuel Path Validation 178     7.7.7 Catalyst and Post-Catalyst Sensor 178     7.8 In-Cylinder Pressure and Instantaneous Torque 180     7.8.1 Compression Asymptote 180     7.8.2 Expansion Asymptote 182     7.8.3 Combustion 183     7.8.4 Gas Exhange and Model Compilation 184     7.8.5 Engine Torque Generation 184     7.9 Mean Value Model for Engine Torque 186     7.9.1 Gross Indicated Work 187     7.9.2 Pumping Work 190     7.9.3 Engine Friction 190     7.9.4 Time Delays in Torque Production 192     7.9.5 Crankshaft Dynamics 193     7.10 Engine-Out Temperature 193     7.11 Heat Transfer and Exhaust Temperatures 196     7.11.1 Temperature Change in a Pipe 196     7.11.2 Heat Transfer Modes in Exhaust Systems 197     7.11.3 Exhaust System Temperature Models 197     7.12 Heat Exchangers and Intercoolers 203     7.12.1 Heat Exchanger Modeling 204     7.13 Throttle Plate Motion 206     7.13.1 Model for Throttle with Throttle Servo 210     8 Turbocharging Basics and Models 211     8.1 Supercharging and Turbocharging Basics 211     8.2 Turbocharging Basic Principles and Performance 214     8.2.1 Turbochargers in Mean Value Engine Models 214     8.2.2 First Law Analysis of Compressor Performance 216     8.2.3 First Law Analysis of Turbine Performance 218     8.2.4 Connecting the Turbine and Compressor 219     8.2.5 Intake Air Density Increase 219     8.3 Dimensional Analysis 220     8.3.1 Compressible Fluid Analysis 221     8.3.2 Model Structure with Corrected Quantities 223     8.4 Compressor and Turbine Performance Maps 223     8.4.1 The Basic Compressor Map 223     8.4.2 The Basic Turbine Map 225     8.4.3 Measurement Procedures for determining Turbo Maps 226     8.4.4 Turbo Performance Calculation Details 227     8.4.5 Heat Transfer and Turbine Efficiency 230     8.5 Turbocharger Models and Parametrizations 232     8.5.1 Map Interpolation Models 232     8.6 Compressor Operation and Modeling 232     8.6.1 Physical Modeling of a Compressor 233     8.6.2 Compressor Efficiency Models 237     8.6.3 Compressor Flow Models 239     8.6.4 Compressor Choke 241     8.6.5 Compressor Surge 244     8.7 Turbine Operation and Modeling 249     8.7.1 Turbine Mass Flow 249     8.7.2 Turbine Efficiency 252     8.7.3 Variable Geometry Turbine 253     8.8 Transient Response and Turbo Lag 254     8.9 Example - Turbocharged SI Engine 255     8.10 Example - Turbocharged Diesel Engine 257     9 Engine Management Systems - An Introduction 263     9.1 Engine Management System (EMS) 263     9.1.1 EMS Building Blocks 264     9.1.2 System for Crank and Time-Based Events 265     9.2 Basic Functionality and Software Structure 266     9.2.1 Torque Based Structure 266     9.2.2 Special Modes and Events 267     9.2.3 Automatic Code Generation and Information Exchange 267     9.3 Calibration and Parameter Representation 267     9.3.1 Engine Maps 268     9.3.2 Model-Based Development 270     10 Basic Control of SI Engines 271     10.1 Three Basic SI Engine Controllers 272     10.1.1 Production System Example 273     10.1.2 Basic Control Using Maps 274     10.1.3 Torque, Air Charge, and Pressure Control 275     10.1.4 Pressure Set Point from Simple Torque Model 275     10.1.5 Set Points from Full Torque Model 276     10.1.6 Pressure Control 277     10.2 Throttle Servo 279     10.2.1 Throttle Control Based on Exact Linearization 280     10.3 Fuel Management and Control 282     10.3.1 Feedforward and Feedback Control Structure 283     10.3.2 Feedforward Control with Basic Fuel Metering 283     10.3.3 Feedback Control 284     10.3.4 Fuel Dynamics and Injector Compensation 289     10.3.5 Observer Based Control and Adaption 290     10.3.6 Dual and Triple Sensor Control 293     10.4 Other Factors that Influence Control 294     10.4.1 Full Load Enrichment 295     10.4.2 Engine Overspeed and Overrun 296     10.4.3 Support Systems that Influence Air and Fuel Calculation 296     10.4.4 Cold Start Enrichment 298     10.4.5 Individual Cylinder -control 298     10.5 Ignition Control 299     10.5.1 Knock Control - Feedback Control 301     10.5.2 Ignition Energy - Dwell Time Control 304     10.5.3 Long-term Torque, Short-term Torque, and Torque Reserve 305     10.6 Idle Speed Control 306     10.7 Torque Management and Idle Speed Control 307     10.8 Turbo Control 308     10.8.1 Compressor Anti-surge Control 308     10.8.2 Boost Pressure Control 309     10.8.3 Boost Pressure Control with Gain Scheduling 312     10.8.4 Turbo and Knock Control 314     10.9 Dependability and Graceful Degradation 315     11 Basic Control of Diesel Engines 317     11.1 Overview of Diesel Engine Operation and Control 317     11.1.1 Diesel Engine Emission Trade-Off 318     11.1.2 Diesel Engine Configuration and Basics 319     11.2 Basic Torque Control 320     11.2.1 Feedforward Fuel Control 322     11.3 Additional Torque Controllers 322     11.4 Fuel Control 323     11.4.1 Control signal - Multiple Fuel Injections 324     11.4.2 Control Strategies for Fuel Injection 326     11.5 Control of Gas Flows 327     11.5.1 Exhaust Gas Recirculation (EGR) 328     11.5.2 EGR and Variable Geometry Turbine (VGT) 329     11.6 Case Study: EGR and VGT Control and Tuning 332     11.6.1 Control Objectives 333     11.6.2 System Properties that Guide the Control Design 334     11.6.3 Control Structure 336     11.6.4 PID Parameterization, Implementation, and Tuning 340     11.6.5 Evaluation on European Transient Cycle 343     11.6.6 Summing up the EGR VGT Case Study 346     11.7 Diesel After Treatment Control 346     12 Engine-Some Advanced Concepts 349     12.1 Variable Valve Actuation 349     12.1.1 Valve Profiles 351     12.1.2 Effects of Variable Valve Actuation 352     12.1.3 Other Valve Enabled Functions 354     12.1.4 VVA and Its Implications for Model Based Control 355     12.1.5 A Remark on Air and Fuel Control Strategies 355     12.2 Variable Compression 356     12.2.1 Example - The SAAB Variable Compression Engine 357     12.2.2 Additional Controls 358     12.3 Signal Interpretation and Feedback Control 361     12.3.1 Ion-sense 361     12.3.2 Example - Ion-sense Ignition Feedback Control 365     12.3.3 Concluding Remarks and Examples of Signal Processing 369     Part IV DRIVELINE - MODELING AND CONTROL     13 Driveline Introduction 373     13.1 Driveline 373     13.2 Motivations for Driveline Modeling and Control 373     13.2.1 Principal Objectives and Variables 374     13.2.2 Driveline Control vs. Longitudinal Vehicle Propulsion Control 375     13.2.3 Physical Background 375     13.2.4 Application-driven Background 375     13.3 Behavior without Appropriate Control 376     13.3.1 Vehicle Shuffle, Vehicle Surge 376     13.3.2 Traversing Backlash-shunt and Shuffle 377     13.3.3 Oscillations After Gear Disengagement 377     13.4 Approach 380     13.4.1 Timescales 380     13.4.2 Modeling and Control 380     14 Driveline Modeling 381     14.1 General Modeling Methodology 381     14.1.1 Graphical Scheme of a Driveline 382     14.1.2 General Driveline Equations 382     14.2 A Basic Complete Model - A Rigid Driveline 384     14.2.1 Combining the Equations 385     14.2.2 Reflected Mass and Inertias 386     14.3 Driveline Surge 386     14.3.1 Experiments for Driveline Modeling 386     14.3.2 Model with Driveshaft Flexibility 387     14.4 Additional Driveline Dynamics 391     14.4.1 Influence on Parameter Estimation 391     14.4.2 Character of Deviation in Validation Data 392     14.4.3 Influence from Propeller-shaft Flexibility 393     14.4.4 Parameter Estimation with Springs in Series 394     14.4.5 Sensor Dynamics 395     14.5 Clutch Influence and Backlash in General 396     14.5.1 Model with Flexible Clutch and Driveshaft 396     14.5.2 Nonlinear Clutch and Driveshaft Flexibility 400     14.5.3 Backlash in General 403     14.6 Modeling of Neutral Gear and Open Clutch 404     14.6.1 Experiments 404     14.6.2 A Decoupled Model 405     14.7 Clutch Modeling 406     14.7.1 Clutch Modes 409     14.8 Torque Converter 409     14.9 Concluding Remarks on Modeling 411     14.9.1 A Set of Models 411     14.9.2 Model Support 411     14.9.3 Control Design and Validating Simulations 412     15 Driveline Control 413     15.1 Characteristics of Driveline Control 414     15.1.1 Inclusion in Torque-Based Powertrain Control 414     15.1.2 Consequence of Sensor Locations 415     15.1.3 Torque Actuation 415     15.1.4 Transmissions 416     15.1.5 Engine as Torque Actuator 417     15.1.6 Control Approaches 418     15.2 Basics of Driveline Control 419     15.2.1 State-Space Formulation of the Driveshaft Model 419     15.2.2 Disturbance Description 420     15.2.3 Measurement Description 420     15.2.4 Performance Output 420     15.2.5 Control Objective 421     15.2.6 Controller Structures 421     15.2.7 Notation for Transfer Functions 422     15.2.8 Some Characteristic Feedback Properties 422     15.2.9 Insight from Simplified Transfer Functions 425     15.3 Driveline Speed Control 427     15.3.1 RQV control 427     15.3.2 Formulating the Objective of Anti-Surge Control 429     15.3.3 Speed Control with Active Damping and RQV Behavior 430     15.3.4 Influence from Sensor Location 435     15.3.5 Load Estimation 436     15.3.6 Evaluation of the Anti-Surge Controller 438     15.3.7 Demonstrating Rejection of Load Disturbance 439     15.3.8 Experimental Verification of Anti-Surge Control 440     15.3.9 Experiment Eliminating a Misconception 443     15.4 Control of Driveline Torques 443     15.4.1 Purpose of Driveline Torque Control for Gear Shifting 444     15.4.2 Demonstration of Potential Problems in Torque Control 444     15.4.3 Approaches to Driveline Torque Control for Gear Shifting 447     15.5 Transmission Torque Control 448     15.5.1 Modeling of Transmission Torque 448     15.5.2 Transmission-Torque Control Criterion 452     15.5.3 Gear-shift Condition 452     15.5.4 Final Control Criterion 454     15.5.5 Resulting Behavior-Feasible Active Damping 454     15.5.6 Validating Simulations and Sensor Location Influence 456     15.6 Driveshaft Torsion Control 459     15.6.1 Recalling Damping Control with PID 460     15.6.2 Controller Structure 460     15.6.3 Observer for Driveshaft Torsion 461     15.6.4 Field Trials for Controller Validation 464     15.6.5 Validation of Gear Shift Quality 464     15.6.6 Handling of Initial Driveline Oscillations 466     15.7 Recapitulation and Concluding Remarks 467     15.7.1 General Methodology 467     15.7.2 Valuable Insights 468     15.7.3 Formulation of Control Criterion 468     15.7.4 Validation of Functionality 468     15.7.5 Experimental Verification of Torque Limit Handling 469     15.7.6 Benefits 469     Part V DIAGNOSIS AND DEPENDABILITY     16 Diagnosis and Dependability 473     16.1 Dependability 474     16.1.1 Functional Safety-Unintended Torque 474     16.1.2 Functional Safety Standards 476     16.1.3 Controller Qualification/Conditions/Prerequisites 477     16.1.4 Accommodation of Fault Situations 478     16.1.5 Outlook 478     16.1.6 Connections 479     16.2 Basic Definitions and Concepts 479     16.2.1 Fault and Failure 480     16.2.2 Detection, Isolation, Identification, and Diagnosis 481     16.2.3 False Alarm and Missed Detection 481     16.2.4 Passive or Active (Intrusive) 482     16.2.5 Off-Line or On-Line (On-Board) 482     16.3 Introducing Methodology 482     16.3.1 A Simple Sensor Fault 482     16.3.2 A Simple Actuator Fault 483     16.3.3 Triple Sensor Redundancy 483     16.3.4 Triple Redundancy Using Virtual Sensors 485     16.3.5 Redundancy and Model-Based Diagnosis 486     16.3.6 Forming a Decision-Residual Evaluation 488     16.3.7 Leakage in a Turbo Engine 491     16.4 Engineering of Diagnosis Systems 494     16.5 Selected Automotive Applications 494     16.5.1 Catalyst and Lambda Sensors 495     16.5.2 Throttle Supervision 496     16.5.3 Evaporative System Monitoring 497     16.5.4 Misfire 501     16.5.5 Air Intake 507     16.5.6 Diesel Engine Model 517     16.6 History, Legislation, and OBD 520     16.6.1 Diagnosis of Automotive Engines 520     16.7 Legislation 521     16.7.1 OBDII 521     16.7.2 Examples of OBDII Legislation Texts 523     A Thermodynamic Data and Heat Transfer Formulas 527     A.1 Thermodynamic Data and Some Constants 527     A.2 Fuel Data 528     A.3 Dimensionless Numbers 528     A.4 Heat Transfer Basics 529     A.4.1 Conduction 535     A.4.2 Convection 536     A.4.3 Radiation 537     A.4.4 Resistor Analogy 537     A.4.5 Solution to Fourth-order Equations 539     References 541     Index 555




نظرات کاربران