ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Microorganisms for Sustainable Environment and Health

دانلود کتاب میکروارگانیسم ها برای محیط زیست و سلامت پایدار

Microorganisms for Sustainable Environment and Health

مشخصات کتاب

Microorganisms for Sustainable Environment and Health

ویرایش: 1 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0128190019, 9780128190012 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 525 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Microorganisms for Sustainable Environment and Health به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب میکروارگانیسم ها برای محیط زیست و سلامت پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب میکروارگانیسم ها برای محیط زیست و سلامت پایدار



میکروارگانیسم‌ها برای محیط زیست و سلامت پایدار آلاینده‌های خطرناک آزاد شده از فعالیت‌های طبیعی و انسانی و پیامدهای آن بر سلامت محیط و انسان را پوشش می‌دهد. این کتاب به عنوان منبع ارزشمندی از دانش پایه و پیشرفت‌های اخیر در فناوری‌های پاک و بیماری‌ها و ناهنجاری‌های مرتبط با آلودگی در زمینه میکروارگانیسم‌ها عمل می‌کند. با تمرکز بر راه حل های کنونی برای مشکلات مختلف زیست محیطی در زمینه پاکسازی زیستی، دانش مفصلی در مورد انواع مختلف آلاینده های سمی زیست محیطی تخلیه شده از منابع مختلف، اثرات سمی آنها در محیط، انسان، حیوانات و گیاهان و همچنین تجزیه زیستی و زیست پالایی آنها ارائه می کند. نزدیک می شود.

این کتاب به دانشمندان محیط زیست و میکروبیولوژیست ها کمک می کند تا در مورد مشکلات محیطی موجود بیاموزند و راه هایی را برای کنترل یا مهار اثرات آنها با استفاده از روش های درمانی مختلف پیشنهاد می کند.


توضیحاتی درمورد کتاب به خارجی

Microorganisms for Sustainable Environment and Health covers hazardous pollutants released from natural as well as anthropogenic activities and implications on environmental and human health. This book serves as a valuable source of basic knowledge and recent developments in the clean technologies and pollution-associated diseases and abnormalities in the context of microorganisms. Focused on current solutions to various environmental problems in the field of bioremediation, it provides a detailed knowledge on the various types of toxic environmental pollutants discharged from different sources, their toxicological effects in environments, humans, animals and plants as well as their biodegradation and bioremediation approaches.

This book helps environmental scientists and microbiologists learn about existing environmental problems and suggests ways to control or contain their effects by employing various treatment approaches.



فهرست مطالب

Cover
Microorganisms for Sustainable Environment and Health
Copyright
Contents
List of Contributors
About the editors
Preface
1 Recent advancement in the biotechnological application of lignin peroxidase and its future prospects
	1.1 Introduction
	1.2 Production or sources of lignin peroxidase
	1.3 Physiochemical and molecular properties lignin peroxidase
	1.4 Mode of action
	1.5 Application in various sectors
		1.5.1 Cosmetic industry
		1.5.2 Bioethanol production
		1.5.3 Pulp and paper industry
		1.5.4 Textile industry
	1.6 Miscellaneous biotechnological application
	1.7 Conclusion and future prospects
	References
2 Microbes mediated approaches for environmental waste management
	2.1 Introduction
	2.2 Characteristics and classification of waste
		2.2.1 Based on material
			2.2.1.1 Solid waste
			2.2.1.2 Liquid waste
			2.2.1.3 Air emissions
		2.2.2 Based on degradation property
		2.2.3 Based on environmental impact
		2.2.4 Based on the source of generation
			2.2.4.1 Household waste
			2.2.4.2 Industrial waste
				2.2.4.2.1 Toxic chemicals
				2.2.4.2.2 Air contaminants
				2.2.4.2.3 Greenhouse gases
				2.2.4.2.4 Hazardous waste
				2.2.4.2.5 Nonhazardous or ordinary industrial waste
				2.2.4.2.6 Construction and demolition waste
				2.2.4.2.7 Electronic waste
				2.2.4.2.8 Medical waste
				2.2.4.2.9 Nuclear waste
	2.3 Waste management practices
		2.3.1 Solid waste management techniques
			2.3.1.1 Dumps and landfills
			2.3.1.2 Thermal treatment
				2.3.1.2.1 Pyrolysis and gasification
				2.3.1.2.2 Plasma arc
				2.3.1.2.3 Incineration
				2.3.1.2.4 Open burning
				2.5.1.2.5 Supercritical water decomposition
			2.3.1.3 Composting
		2.3.2 Liquid waste management techniques
			2.3.2.1 Preliminary treatment
				2.3.2.1.1 Screening
				2.3.2.1.2 Shredding
				2.3.2.1.3 Grit removal
				2.3.2.1.4 Preaeration
				2.3.2.1.5 Chemical addition
			2.3.2.2 Primary treatment
			2.3.2.3 Secondary treatment
			2.3.2.4 Tertiary treatment
	2.4 Role of microorganisms in waste management
		2.4.1 Bioremediation
		2.4.2 Bioaugmentation
		2.4.3 Decomposition
			2.4.3.1 Aerobic decomposition
			2.4.3.2 Anaerobic decomposition
		2.4.4 Recycling
	2.5 Conclusion and future prospects
	References
3 Actinobacteria for the effective removal of toxic dyes
	3.1 Introduction
	3.2 Toxic dyes
		3.2.1 Azo dyes
		3.2.2 Triphenylmethane dyes
	3.3 Removal technologies
		3.3.1 Physicochemical approaches
		3.3.2 Biological approaches
		3.3.3 Microbial-based technologies
	3.4 Actinobacteria
		3.4.1 Origin, diversity, and ubiquity
		3.4.2 Applications in bioremediation
	3.5 Removal of dyes by actinobacteria
		3.5.1 Actinobacteria with dye removal potential
		3.5.2 Biosorption as a mechanism for dye removal
		3.5.3 Biodegradation as a mechanism for dye removal
	3.6 Innovations to the use of actinobacteria for dye removal
	3.7 Conclusions and prospects
	Acknowledgments
	References
4 Arsenic toxicity: adverse effect and recent advance in microbes mediated bioremediation
	4.1 Introduction
	4.2 Arsenic toxicity and its adverse effects
	4.3 Arsenic resistance via microbial intracellular and extracellular sequestration
		4.3.1 Bioaccumulation of arsenic
		4.3.2 Biosorption of arsenic
		4.3.3 Arsenic bioremediation by adsorption
	4.4 Microbial transformation of arsenic
		4.4.1 Oxidation of arsenite
		4.4.2 Reduction of arsenate
		4.4.3 Arsenic methylation
		4.4.4 Arsenic demethylation
	4.5 Bioremediation of arsenic by microorganisms
		4.5.1 Immobilization of arsenic
		4.5.2 Mobilization of arsenic
		4.5.3 Bioleaching of arsenic
		4.5.4 Biostimulation of arsenic
		4.5.5 Biofilm formation for arsenic
		4.5.6 Biomineralization of arsenic
	4.6 Arsenic remediation by genetic engineered microbes
	4.7 In silico approaches for bioremediation of arsenic
	4.8 Conclusion
	Acknowledgment
	References
5 Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants
	5.1 Introduction
	5.2 Biofilm: An overview
		5.2.1 Composition
			5.2.1.1 Polysaccharides
			5.2.1.2 Protein
			5.2.1.3 Extracellular DNA
			5.2.1.4 Membrane vesicles
		5.2.2 Role of extracellular polysaccharide in biofilm
		5.2.3 Biofilm formation steps
			5.2.3.1 Microbial attachment to the surface
			5.2.3.2 Microcolony formation
			5.2.3.3 Maturation and architecture
			5.2.3.4 Detachment/dispersion of biofilm
		5.2.4 Signaling in biofilm or mechanism in biofilm formation
	5.3 Biofilm-forming microorganisms
		5.3.1 Bacteria
		5.3.2 Fungi
		5.3.3 Algae
	5.4 Factors affecting biofilm formation
		5.4.1 Substrate nature
		5.4.2 Effect of pH
		5.4.3 Rheological and adhesive properties of biofilms (viscoelastic behavior)
		5.4.4 Effect of temperature
		5.4.5 Effect of metal ions
		5.4.6 Effect of exogenous (addition) signaling molecules
		5.4.7 Secondary metabolites
		5.4.8 Impact of environmental stimuli (shear stress) on biofilm formation
		5.4.9 Mechanical properties of biofilms
		5.4.10 Nutrients availability
	5.5 The adverse impact of microbial biofilm
	5.6 Emerging scope in biofilm
		5.6.1 Production of surfactants/proteins
		5.6.2 Quorum quenching
	5.7 Application of biofilm in bioremediation
		5.7.1 Wastewater treatment
			5.7.1.1 Organic pollutants
			5.7.1.2 Inorganic pollutants
			5.7.1.3 Micropollutants removal
		5.7.2 Challenges during the pollutant removal
	5.8 Miscellaneous use of biofilm
	5.9 Conclusion and future perspectives
	Acknowledgments
	References
6 Waste treatment approaches for environmental sustainability
	6.1 Introduction
	6.2 Generation of waste
		6.2.1 Municipal waste
		6.2.2 Construction and demolition waste
		6.2.3 Industrial waste
		6.2.4 Medical waste
		6.2.5 Hazardous waste
	6.3 Types of waste
	6.4 Conventional, physical, and chemical treatments
		6.4.1 Processing
		6.4.2 Coagulation and sedimentation
		6.4.3 Filtration
		6.4.4 Thermal treatments (incineration and pyrolysis/gasification)
			6.4.4.1 Incineration
			6.4.4.2 Pyrolysis/gasification
		6.4.5 Landfills
	6.5 Biological treatment
		6.5.1 Microbial mediated
			6.5.1.1 Anaerobic digestion
			6.5.1.2 Composting
		6.5.2 Plant mediated
	6.6 Recovery, recycling, and reuse
	6.7 Legal and institutional framework for waste treatments
	6.8 Life cycle assessment decision for waste treatments
	6.9 Conclusion
	References
7 Biodegradation of environmental pollutant through pathways engineering and genetically modified organisms approaches
	7.1 Introduction
	7.2 Genetically modified organism
		7.2.1 Designing of genetically modified organisms
		7.2.2 Genetically modifying bacteria
		7.2.3 Applications of genetically modified bacteria
			7.2.3.1 In biomedical field
				7.2.3.1.1 Immunotherapy of cancer
				7.2.3.1.2 Role in drug delivery
				7.2.3.1.3 Production of insulin
			7.2.3.2 Agricultural applications of bacteria
				7.2.3.2.1 Bacteria improving crop nutrition
				7.2.3.2.2 Bacteria controlling pest
				7.2.3.2.3 Bacteria controlling plant disease
		7.2.4 Genetically modified fungus
			7.2.4.1 Medicinal use of fungus
			7.2.4.2 Fungus as cultured foods
			7.2.4.3 Genetically modified fungus in mycoremediation
		7.2.5 Genetically modified plants
			7.2.5.1 Genetically modified plant in food nutrition improvement
			7.2.5.2 Genetically modified plant controlling biotic and abiotic stress
			7.2.5.3 Genetically modified plant in phytoremediation
		7.2.6 Other genetically modified organisms and their applications
			7.2.6.1 Goldfish in pollutant testing
		7.2.7 Genetically modified cyanobacteria
	7.3 Factors affecting bioremediation
		7.3.1 Degradation process
		7.3.2 Moisture content
		7.3.3 Nutrient availability
		7.3.4 Temperature
		7.3.5 pH
		7.3.6 Molecular oxygen (O2) availability
		7.3.7 Biological factors
		7.3.8 Biocatalyst optimization
		7.3.9 Protein engineering
	7.4 Phytoremediation
	7.5 Mycoremediation
	7.6 Survivability of genetically modified organisms
	7.7 Sustainability of genetically modified organism
	7.8 Future prospects and conclusion
	References
8 Exploring the microbiome of smokeless tobacco
	8.1 Introduction
	8.2 History of association of microorganisms with smokeless tobacco
	8.3 16S rRNA analysis for smokeless tobacco
	8.4 Microbial diversity of smokeless tobacco
		8.4.1 Bacterial diversity
		8.4.2 Fungal diversity of smokeless tobacco
	8.5 Relationship with the oral microbiome
	8.6 Future prospects
	8.7 Conclusions
	Acknowledgments
	References
9 Microbial ligninolytic enzymes and their role in bioremediation
	9.1 Introduction
	9.2 Ligninolytic enzymes, structure, and catalytic mechanism
		9.2.1 Lignin-modifying enzymes
			9.2.1.1 Lignin peroxidase
			9.2.1.2 Manganese peroxidase
			9.2.1.3 Versatile peroxidase
		9.2.2 Laccases
	9.3 Applications of ligninolytic enzymes in the bioremediation of industrial pollutants
		9.3.1 Textile Industries
			9.3.1.1 Degradation and decolorization of synthetic dyes
			9.3.1.2 Denim washing/finishing
		9.3.2 Pulp and paper industry
			9.3.2.1 Delignification of lignocellulose
			9.3.2.2 Biopulping and biobleaching
		9.3.3 Degradation and detoxification of recalcitrant/xenobiotic compounds
			9.3.3.1 Degradation of petroleum hydrocarbons
			9.3.3.2 Pesticide degradation
	9.4 Bioremediation of industrial wastewaters
	9.5 Conclusion
	Acknowledgment
	References
10 Recent advancements in microalgal-induced remediation of wastewaters
	10.1 Introduction
	10.2 Exploited application of microalgae for the remediation of wastewaters
	10.3 Mechanism of wastewater treatment by microalgae
	10.4 Potential implication of microalgae for the remediation of wastewaters loaded with persistent pollutants
		10.4.1 Removal of toxic metal ions
		10.4.2 Removal of cyanide compounds
		10.4.3 Removal of hydrocarbons
		10.4.4 Removal of pesticide residues
		10.4.5 Removal of endocrinal disruptors
		10.4.6 Phycoremediation of inorganic nutrients
		10.4.7 Microalgal-induced reduction of BOD and COD from wastewaters
	10.5 Conclusions and recommendations
	References
11 Cyanobacteria as source of novel antimicrobials: a boon to mankind
	11.1 Introduction
	11.2 Varied modes of nutrition in cyanobacteria
	11.3 Bacterial and fungal drug resistance—the need for novel biomolecules
	11.4 The potential of cyanobacteria in production of varied bioactive metabolites, including antibiotics
	11.5 Antimicrobials by cyanobacteria
		11.5.1 Antibacterial action
		11.5.2 Antifungal action
		11.5.3 Antiviral action
	11.6 Conclusion
	References
12 Composite nanostructure: a potential material for environmental safety and health
	12.1 Introduction
	12.2 Nanocomposite
	12.3 Classification of nanocomposites
		12.3.1 Sol–gel nanocomposites
		12.3.2 Intercalation-type nanocomposites
		12.3.3 Entrapment-type nanocomposites
		12.3.4 Electroceramic nanocomposites
		12.3.5 Structural ceramic nanocomposites
	12.4 Method for the fabrication of composite materials
		12.4.1 Conventional powder route
		12.4.2 Mechanochemical milling synthesis
		12.4.3 Vapor phase reaction technique
		12.4.4 Sol–gel process
		12.4.5 Coprecipitation
	12.5 Applications of composite material
		12.5.1 Environmental protection
		12.5.2 Wastewater treatment
			12.5.2.1 Iron-based composites
			12.5.2.2 Nanocomposites with titanium dioxides
		12.5.3 Role of composites in anticorrosion barrier
		12.5.4 Antibacterial activity
			12.5.4.1 Chitosan-modified nanocomposites
			12.5.4.2 Iron oxide-based silver nanocomposite
		12.5.5 Drug delivery system
			12.5.5.1 Chitosan-magnetic nanoparticle composite in drug delivery
			12.5.5.2 Chitosan–carbon nanotubes composite in drug delivery
	12.6 Conclusion
	References
13 In silico bioremediation strategies for removal of environmental pollutants released from paper mills using bacterial li...
	13.1 Introduction
	13.2 Microbial enzymatic system for minimizing the effects of the pollutants
	13.3 Microbial-derived enzymes involved in bioremediation
		13.3.1 Lignin peroxidase
		13.3.2 Manganese peroxidase
		13.3.3 Laccase
		13.3.4 Versatile peroxidases
		13.3.5 DyP type peroxidase
	13.4 Environmental pollutants
		13.4.1 Health hazards of environmental pollutants on human health
	13.5 Pollutants from paper mills
		13.5.1 Wastewater
		13.5.2 Solid waste
		13.5.3 Gas emissions
	13.6 Toxicity of paper mill pollutants
	13.7 In silico bioremediation approach
		13.7.1 In silico toxicity of the pollutants
		13.7.2 Biodegradation impact on environmental from bioremediation
		13.7.3 The biodegradative strain database: BSD
		13.7.4 Ecological structure–activity relationships
	13.8 Molecular docking approach for the bioremediation
	13.9 Molecular dynamics simulation approach for the bioremediation
	13.10 Biodegradation pathways prediction of pollutants from paper mills
		13.10.1 Simulation of metabolic pathways of biodegradation of paper mill pollutants
	13.11 Future perspective
	13.12 Pros and cons
	13.13 Conclusion
	Acknowledgment
	References
14 Pectinases: from microbes to industries
	14.1 Introduction
	14.2 Classification of pectinases
		14.2.1 Pectinases degrading hairy region of pectin
			14.2.1.1 Rhamnogalacturonan hydrolases
			14.2.1.2 Rhamnogalacturonan lyases
			14.2.1.3 Rhamnogalacturonan rhamnohydrolase
			14.2.1.4 Rhamnogalacturonan glacturonohydrolases
			14.2.1.5 Rhamnogalacturonan acetylesterases
			14.2.1.6 Xylogalacturonan hydrolase
		14.2.2 Pectinases degrading smooth region of pectin
			14.2.2.1 Esterases
				14.2.2.1.1 Pectin methyl esterase
				14.2.2.1.2 Pectin acetyl esterase (PAE)
			14.2.2.2 Depolymerases
				14.2.2.2.1 Polygalacturonases
				14.2.2.2.2 Pectate lyase
				14.2.2.2.3 Pectin lyase
	14.3 Pectinases producing microbial strains
	14.4 Biotechnological applications of microbial pectinases
		14.4.1 Textile processing and bioscouring of cotton fibers
		14.4.2 Plant fiber retting and degumming
		14.4.3 Fruits and vegetables processing
		14.4.4 Wine processing
		14.4.5 Coffee, cocoa, tea, and tobacco fermentation
		14.4.6 Paper and pulp industries
		14.4.7 Recycling of wastepaper
		14.4.8 Wastewater treatment
		14.4.9 Prebiotics/functional foods
		14.4.10 Oil extraction
		14.4.11 Liquefaction and saccharification of agricultural substrates
	14.5 Some other applications of microbial pectinases
		14.5.1 Animal and poultry feed
		14.5.2 Purification of plant viruses
		14.5.3 Protoplast isolation
	14.6 Conclusion
	References
15 Understanding and combating the antibiotic resistance crisis
	15.1 Introduction
	15.2 Emergence and consequences of antibiotic resistance
	15.3 Mechanism of antibiotic resistance
		15.3.1 Preventing an antimicrobial from reaching its target site
		15.3.2 Extruding the antimicrobial through efflux pumps
		15.3.3 Degradation of antimicrobial agents
		15.3.4 Modification of target site
		15.3.5 Expression of alternative protein
		15.3.6 Multiple drug resistance mechanisms
	15.4 Spread and transfer of antibiotic resistance elements
		15.4.1 Intrinsic resistance
		15.4.2 Acquired resistance
			15.4.2.1 Mutation
			15.4.2.2 Horizontal gene transfer
	15.5 Quest for exploring new antibiotics
	15.6 Measures to control the rise and spread of antibiotic resistance
		15.6.1 In clinical and health sector
			15.6.1.1 Prudent use of antibiotics in clinical and health sector
			15.6.1.2 Restricting the spread of resistant organism
		15.6.2 In agriculture
		15.6.3 Commercialization
	15.7 Conclusion
	References
16 Multidrug resistance in pathogenic microorganisms
	16.1 Antibiotic resistance
	16.2 Emergence of antibiotic resistance
	16.3 Antibiotic resistance phenomenon
		16.3.1 Biochemical pathway
			16.3.1.1 Presence of multidrug efflux pump on the membrane bilayer
			16.3.1.2 Reduced outer membrane permeability
			16.3.1.3 Inactivation of the antibiotics
			16.3.1.4 Target modification
		16.3.2 Genetic pathways
			16.3.2.1 Mutations
			16.3.2.2 Horizontal gene transfer
	16.4 Identification of antibiotic resistance
	16.5 Conclusion
	References
17 Microbial hydrogen production: fundamentals to application
	17.1 Introduction
		17.1.1 Hydrogen as a sustainable fuel
		17.1.2 About biohydrogen
		17.1.3 Need for microbial production of H2
	17.2 Different microbial hydrogen production processes
		17.2.1 Biophotolysis of water
			17.2.1.1 Direct biophotolysis
			17.2.1.2 Indirect biophotolysis
		17.2.2 Photofermentation
		17.2.3 Dark fermentation
		17.2.4 Hydrogen producing microorganisms
			17.2.4.1 Biochemistry of dark fermentation
		17.2.5 Microbial electrolysis cell
			17.2.5.1 Biochemistry of microbial electrolysis cell
			17.2.5.2 Microbiology of microbial electrolysis cell
			17.2.5.3 Microbial electrolytic cell architecture
	17.3 Hybrid systems using dark, photofermentation, and/or microbial electrolysis cell
	17.4 Wastewater as a source of biohydrogen production!!
		17.4.1 Sewage sludge as substrate
			17.4.1.1 Pretreatment of the sludge
		17.4.2 Factors affecting H2 production using wastewater as substrate
	17.5 Applications of hydrogen as a zero-carbon fuel
		17.5.1 Transport sector
		17.5.2 Electrical energy from biological hydrogen
	17.6 Policies and economics of hydrogen production
	17.7 Issues and barriers
		17.7.1 Scope
	17.8 Conclusion
	Acknowledgment
	References
18 Antibiotics: mechanisms of action and modern challenges
	18.1 Introduction
		18.1.1 A brief history of antibiotics
	18.2 Different classes of antibiotics
		18.2.1 Based on the origin, antibiotics can be divided into two classes
		18.2.2 Based on the response towards parasitic cells, antibiotics can be divided into two categories
		18.2.3 On the basis of their molecular mechanism of action against bacterial cells, antibiotics are mainly divided into fou...
			18.2.3.1 β-lactams
			18.2.3.2 Macrolides, chloramphenicol, and oxazolidinones
			18.2.3.3 Aminoglycosides and tetracycline
			18.2.3.4 Quinolones
			18.2.3.5 Sulfonamides
	18.3 New introductions since 2011
	18.4 Side effects of common antibiotics and its interaction with other drugs
	18.5 Future perspective of antibiotics discovery
		18.5.1 Establishment of new targets in bacterial genome
		18.5.2 Noncultivable bacteria as the source
		18.5.3 Bacteriophage as the new therapy
		18.5.4 Nonmultiplying bacteria as the target
	18.6 Antibiotic resistance
	References
19 Food poisoning hazards and their consequences over food safety
	19.1 Introduction
	19.2 Types of food illness
	19.3 Microbes responsible for food poisoning
		19.3.1 Bacterial food poisoning
			19.3.1.1 Botulism
			19.3.1.2 Food poisoning by staphylococcal
		19.3.2 Viral food poisoning
		19.3.3 Phycotoxicosis
		19.3.4 Mycotoxicosis
	19.4 Factors affecting the growth of microbes
		19.4.1 Moisture content
		19.4.2 pH and acidity
		19.4.3 Nutrient content
		19.4.4 Biological structure
		19.4.5 Redox potential
		19.4.6 Naturally and added antimicrobial compounds
		19.4.7 Competitive microbial flora
	19.5 Foodborne infections, intoxication, and symptoms
		19.5.1 Foodborne infection
		19.5.2 Foodborne intoxication
		19.5.3 Foodborne diseases due to chemical contamination
		19.5.4 Pesticide residues
		19.5.5 Atropine poisoning
	19.6 Preventive measures for food poisoning
	19.7 Conclusion
	19.8 Future prospects
	Acknowledgment
	References
20 Application of microbial consortia in degradation and detoxification of industrial pollutants
	20.1 Introduction
	20.2 Consortia, multispecialized biological systems
	20.3 Approaches for isolation and selection of microorganisms for microbial consortia development
	20.4 What microbial consortia can do and how communication organizes their behavior?
	20.5 Applications of microbial consortia in textile-dye discoloration
	20.6 Microbial consortia in petroleum hydrocarbons degradation
	20.7 Conclusion and outlooks
	References
21 Environmental pollution: causes, effects, and the remedies
	21.1 Introduction
	21.2 Major types of pollution
		21.2.1 Air pollution
		21.2.2 Water pollution
		21.2.3 Soil pollution
	21.3 Causes of environmental pollution
		21.3.1 Urbanization and industrialization
		21.3.2 Mining and exploration
		21.3.3 Agricultural activities
		21.3.4 Burning of fossil fuels
		21.3.5 Particulate matter
		21.3.6 Plastics
	21.4 Effects of environmental pollution
		21.4.1 Effects on the environment
		21.4.2 Effects on human health
		21.4.3 Effects on animal health
		21.4.4 Effects on microorganisms
	21.5 Remedies
	21.6 Conclusion
	References
22 Microplastic degradation by bacteria in aquatic ecosystem
	22.1 Introduction
	22.2 Aquatic ecosystem
	22.3 Microplastics
		22.3.1 Primary microplastics
		22.3.2 Secondary microplastics
		22.3.3 Nanoplastics
		22.3.4 Other plastic products
	22.4 Sources of microplastics in freshwater
		22.4.1 Microplastics in lakes
			22.4.1.1 Surface water
			22.4.1.2 Sediments in beach and bottom
		22.4.2 Microplastics in rivers
			22.4.2.1 Surface water
			22.4.2.2 Beach and bottom sediments
		22.4.3 Distribution in water bodies around the globe
		22.4.4 Chemical ingredients of plastics
			22.4.4.1 Flame retardants
			22.4.4.2 Photostabilizers (UV or light stabilizers)
			22.4.4.3 Heat stabilizers
			22.4.4.4 Biocides (or antimicrobial agents)
			22.4.4.5 Colorants
	22.5 Potential endocrine disruption and toxicity from plasticizers and other additives
		22.5.1 Pollutants adhered to microplastics
		22.5.2 Microplastics sorbed persistent organic pollutants
		22.5.3 Metals sorbed to microplastics
	22.6 Microbial degradation of plastics
		22.6.1 Biodegradation process of plastics
		22.6.2 Biodegradation of natural plastics
			22.6.2.1 Biodegradation of polyhydroxyalkanoates
	22.7 Microbial development as biofilms on polymer
	22.8 Enzymatic degradation of plastics with carbon–carbon backbones
		22.8.1 Enzymatic degradation of polyurethane
		22.8.2 Enzymatic degradation of polyethylene terephthalate
		22.8.3 Enzymatic degradation of polyhydroxalkanoates
	22.9 Conclusions
	References
	Further reading
23 The role of microbial pathogens in cancer development: a potential guide to anticancer drugs
	23.1 Introduction
	23.2 Cancer induced by bacterial metabolites
	23.3 Oncoviruses
	23.4 Mycotoxin-induced malignancies
	23.5 Parasitic infection and the human cancer chain of development
	23.6 Food substances and cancer proliferation
	23.7 Genetics and immunological basis of cancer
	23.8 Cancer infectious pathogens and common risk factors
	23.9 Cancer and drug development
	23.10 Conclusion
	Acknowledgments
	References
Index
Back Cover




نظرات کاربران