دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Volodymyr Kushch
سری:
ISBN (شابک) : 0128232536, 9780128232538
ناشر: Butterworth-Heinemann
سال نشر: 2020
تعداد صفحات: 449
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 33 مگابایت
در صورت تبدیل فایل کتاب Micromechanics of Composites: Multipole Expansion Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میکرومکانیک کامپوزیت ها: رویکرد انبساط چند قطبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Micromechanics of Composites: Multipole Expansion Approach، ویرایش دوم پیشرفت قابل توجه اخیر در توسعه روش انبساط چند قطبی را تشریح می کند و بر کاربرد آن در مسائل میکرومکانیکی واقعی تمرکز دارد. این کتاب موضوعات میکرومکانیکی مانند رسانایی و الاستیسیته کامپوزیت های ذره ای و فیبری را پوشش می دهد، از جمله مواردی که دارای رابط های ناقص و نیمه جدا شده، نانوکامپوزیت ها، جامدات ترک خورده و غیره هستند. راهحلهای تحلیلی کامل و دادههای عددی دقیق به شیوهای یکپارچه برای مدلهای ناهمگنی چندگانه جامدات ناهمگن محدود، نیمه و نامتناهی ارائه شدهاند. این ویرایش جدید بهروزرسانی شده است تا شامل نظریهها و تکنیکهای روش انبساط چندقطبی باشد.
دو فصل کاملاً جدید که رسانایی و کشش کامپوزیتها با ناهمگنیهای بیضی و اجزای ناهمسانگرد را پوشش میدهد اضافه شده است. تاکید ویژه ای بر جامدات ناهمگن با رابط های ناقص، از جمله مواد نانومتخلخل و نانوکامپوزیت شده است.
Micromechanics of Composites: Multipole Expansion Approach, Second Edition outlines substantial recent progress in the development of the multipole expansion method and focuses on its application to actual micromechanical problems. The book covers micromechanics topics such as conductivity and elasticity of particulate and fibrous composites, including those with imperfect and partially debonded interfaces, nanocomposites, cracked solids, and more. Complete analytical solutions and accurate numerical data are presented in a unified manner for the multiple inhomogeneity models of finite, semi-, and infinite heterogeneous solids. This new edition has been updated to include the theories and techniques of the multipole expansion method.
Two entirely new chapters covering the conductivity and elasticity of composites with ellipsoidal inhomogeneities and anisotropic constituents have been added. A special emphasis is made on the heterogeneous solids with imperfect interfaces, including the nanoporous and nanocomposite materials.
Contents Preface to the first edition Preface to the second edition 1 Multipole expansion approach 1.1 Introduction 1.2 Structure models 1.2.1 Single inhomogeneity 1.2.2 Finite arrays of inhomogeneities 1.2.3 Composite band and layer 1.2.4 Representative unit cell 1.3 Bulk and interface field models 1.3.1 Conductivity 1.3.2 Elasticity 1.4 Method of solution 1.4.1 Multipole expansion: why and how? 1.4.2 Local expansion 1.4.3 Superposition principle 1.4.4 Summary of the method 1.5 Induced dipole moment of inhomogeneity 1.5.1 Definition 1.5.2 Conservation law 1.5.3 Relationship to the property contribution tensor 1.6 Macroscopic field parameters 1.6.1 Conductivity Definition of the macroscopic quantities Formula for the macroscopic flux 1.6.2 Elasticity 1.7 Homogenization problem 1.7.1 Maxwell scheme 1.7.2 Rayleigh scheme 2 Potential fields of interacting spherical inhomogeneities 2.1 Single inhomogeneity 2.1.1 Series expansion 2.1.2 Resolving equations 2.2 Particle coating vs imperfect interface 2.3 Finite cluster model 2.3.1 FCM boundary-value problem Direct (superposition) sum Local series expansion Infinite linear system 2.3.2 Convergence proof 2.3.3 Modified Maxwell scheme for effective conductivity Formal representation Convergence check 2.4 Composite sphere 2.4.1 Outer boundary condition 2.4.2 Interface conditions 2.4.3 RSV and effective conductivity of composite 2.5 Half-space FCM 2.5.1 Formal solution 2.5.2 Half-space boundary condition 2.5.3 Interface conditions 3 Periodic multipoles and RUC model of a composite 3.1 Composite layer 3.1.1 2P fundamental solution of Laplace equation 3.1.2 2P solid harmonics 3.1.3 Heat flux through the composite layer 3.2 Periodic composite as a sandwich of composite layers 3.3 Representative unit cell model 3.4 3P scalar solid harmonics 3.4.1 Direct summation 3.4.2 Hasimoto\'s approach 3.4.3 2P harmonics based approach 3.5 Local temperature field 3.6 Effective conductivity 3.6.1 Rayleigh homogenization scheme 3.6.2 Numerical results 4 Elastic solid with spherical inhomogeneities 4.1 Single inhomogeneity in an unbounded solid 4.1.1 Multipole series expansion 4.1.2 Induced elastic dipole moment 4.1.3 Far field expansion 4.1.4 Resolving set of linear equations 4.2 Coated spherical inhomogeneity 4.3 Application to nanocomposite: Gurtin & Murdoch theory 4.3.1 Imperfect interface conditions 4.3.2 Formal solution 4.3.3 Numerical examples Single cavity under hydrostatic far-field load Single cavity under uniaxial tension 4.4 Isotropic solid with anisotropic inhomogeneity 4.4.1 Formal solution 4.4.2 Resolving set of equations 4.5 Finite cluster of inhomogeneities 4.5.1 Direct (superposition) sum 4.5.2 Local expansion 4.5.3 Infinite system of linear equations 4.5.4 Numerical examples Two cavities under uniaxial tension Interface-induced stress in a nanostructured solid Stress concentration factor 4.6 Effective stiffness of composite 4.6.1 Modified Maxwell scheme 4.6.2 Cubic symmetry Bulk modulus k* Shear modulus μ1* Shear modulus μ2* 4.7 Elastic composite sphere 4.7.1 Elastic fields 4.7.2 Effective elastic moduli Macroscopic strain and stress tensors Effective bulk modulus Effective shear modulus 5 Elasticity of composite half-space, layer, and bulk 5.1 Finite cluster of spherical inhomogeneities in a half-space 5.1.1 Problem statement 5.1.2 Homogeneous half-space 5.1.3 Heterogeneous half-space 5.2 Doubly periodic structures 5.2.1 2P solutions of Lamé equation 5.2.2 Composite layer 5.2.3 Periodic composite as a sandwich of composite layers 5.3 Triply periodic solutions of Lamé equation 5.3.1 Scalar 3P biharmonics 5.3.2 Periodic solutions of Lamé equation 5.4 RUC model 5.4.1 Formal solution Superposition sum Local expansion Algebraic set of equations 5.4.2 Effective stiffness tensor Approximate formula for the bulk modulus of nanocomposite Average stress as a governing parameter 5.5 Numerical study 5.5.1 Local stress field 5.5.2 Effective stiffness tensor Periodic composite Random structure composite Nanoporous solid 6 Conductivity of a solid with spheroidal inhomogeneities 6.1 Single inhomogeneity 6.1.1 Series expansion 6.1.2 Induced dipole moment 6.1.3 Resolving equations for perfect interface 6.1.4 Limiting cases: spherical, penny-shaped, and needle-like inhomogeneities Spherical inhomogeneity Penny-shaped crack and superconducting flake Flux intensity factor 6.1.5 LC imperfect interface 6.1.6 HC imperfect interface 6.2 Finite cluster model 6.3 Modified Maxwell scheme 6.3.1 Analytical results 6.3.2 Numerical examples Single inhomogeneity with imperfect interface FCM 6.4 Heat conduction in a periodic composite 6.4.1 Doubly periodic harmonics 6.4.2 Triply periodic harmonics 6.4.3 Temperature field in a periodic composite 3P approach 2P approach 6.4.4 Multiple inhomogeneity RUC model 6.5 Rayleigh homogenization scheme 6.5.1 Composite with perfect interface Spheroidal cavities and inhomogeneities Penny-shaped cracks Superconducting flakes 6.5.2 Composite with imperfect interface LC interface HC interface 7 Elastic solid with spheroidal inhomogeneities 7.1 Single inhomogeneity with perfect interface 7.1.1 Displacement field 7.1.2 Elastic dipole moment 7.1.3 Stress intensity factors for a penny-shaped crack 7.2 Single inhomogeneity with imperfect interface 7.2.1 Spring type interface Resolving system Numerical examples 7.2.2 Membrane type interface Resolving system Numerical examples 7.3 Finite cluster of spheroidal inhomogeneities 7.3.1 Formal solution 7.3.2 Local expansion 7.3.3 Numerical examples Penny-shaped crack interacting with another crack or inhomogeneity Interacting nanocavities 7.4 Modified Maxwell scheme 7.4.1 Single inhomogeneity model Weak interface Stiff interface 7.4.2 Multiple cavity model 7.5 Elastic half-space with spheroidal inhomogeneities 7.6 RUC model of an elastic spheroidal particle composite 7.6.1 Periodic solutions of Lamé equation 7.6.2 Displacement solution 7.6.3 Numerical study Stress concentration Stress intensity factor Nanoporous solid Nanocomposite 7.6.4 Rayleigh homogenization scheme Composite with a perfect interface Effective stiffness of a nanocomposite 8 Composites with transversely isotropic constituents 8.1 Transversely isotropic conductivity 8.1.1 Partial solutions 8.1.2 Problem statement 8.1.3 Temperature field 8.1.4 Effective conductivity tensor 8.2 Transversely isotropic elasticity 8.2.1 Partial vector solutions 8.2.2 Single inhomogeneity 8.2.3 Finite array of inhomogeneities 8.3 RUC model 8.3.1 Displacement field 8.3.2 Effective stiffness tensor 8.4 Numerical examples 8.4.1 Stress concentration 8.4.2 Effective stiffness 9 Conductivity of an ellipsoidal particle composite 9.1 Composite with isotropic constituents 9.1.1 Problem statement 9.1.2 Single ellipsoidal inhomogeneity Series expansion Resolving system Induced dipole moment 9.1.3 Finite array of ellipsoids 9.1.4 Periodic array of ellipsoids 9.2 Composite with anisotropic constituents 9.2.1 Problem statement 9.2.2 Reduction to isotropic case Affine mapping Global and local variables Boundary conditions 9.2.3 Single ellipsoidal inhomogeneity Formal solution Imperfect interface Induced dipole moment 9.2.4 Eshelby-type problem 9.2.5 Finite cluster model Reexpansion formulas Resolving system 9.2.6 RUC model 9.3 Effective conductivity of a composite 9.3.1 Maxwell homogenization scheme 9.3.2 Rayleigh homogenization scheme 9.3.3 Numerical study Convergence in terms of harmonics Convergence in terms of cluster size Comparison study 10 Elasticity of an ellipsoidal particle composite 10.1 Single ellipsoidal inhomogeneity 10.1.1 Series expansion 10.1.2 Dipole moment 10.2 Uniform far filed 10.2.1 Ellipsoidal cavity, displacement boundary condition Normal mode Shear mode 10.2.2 Ellipsoidal cavity: traction boundary condition Normal mode Shear mode 10.2.3 Ellipsoidal inhomogeneity 10.3 Nonuniform far field 10.3.1 Displacement boundary condition 10.3.2 Traction boundary condition 10.3.3 Perfect interface 10.3.4 Imperfect interface 10.4 Finite cluster of ellipsoidal inhomogeneities 10.4.1 Displacement solution Inhomogeneity Matrix 10.4.2 Resolving linear system 10.4.3 Effective stiffness tensor 10.5 Orthotropic elastic solid with an arbitrarily oriented inhomogeneity 10.5.1 Problem formulation 10.5.2 Reduction to isotropic case Affine mapping Transformed problem 10.5.3 Multipole expansion solution Inhomogeneity Matrix Resolving linear system 10.6 Numerical study 10.6.1 Single inhomogeneity Convergence in terms of integration points Convergence in terms of harmonics Interface stress Effective stiffness 10.6.2 Multiple inhomogeneities Convergence Interface stress Effective stiffness A Spherical harmonics and related theory A.1 Scalar spherical harmonics Laplace equation in spherical coordinates Selected properties of solid spherical harmonics Spherical harmonics vs multipole potentials Fourier integral representation A.2 Reexpansion formulas for Yts and yts Equally oriented coordinate systems Arbitrarily oriented coordinate systems A.3 Scalar spherical biharmonics A.4 Vector spherical surface harmonics A.5 Partial solutions of Lamé equation Definition Explicit expressions Normal traction Net force and torque A.6 Partial solutions for a half-space Cartesian vector surface harmonics Vector solutions of Lamé equation for a half-space Integral transforms and series expansions A.7 Reexpansion formulas for Uts(i) and uts(i) Translation Rotation B Spheroidal harmonics and related theory B.1 Scalar solid harmonics Laplace equation in spheroidal coordinates Spheroidal solid harmonics Relationships between the spherical and spheroidal harmonics Alternative set of spheroidal harmonics Extended set of spheroidal harmonics B.2 Reexpansion formulas Formal series expansion Translation: integral form of the expansion coefficients Translation: rational form of the expansion coefficients Rotation B.3 Double Fourier integral transform of spheroidal harmonics B.4 Vector solutions of Lamé equation Definition Selected properties Integral transforms B.5 Reexpansion formulas for Vts(i) and vts(i) General form Rotation C Ellipsoidal harmonics and related theory C.1 Ellipsoidal harmonics Solid harmonics Surface harmonics C.2 Differentiation and integration Derivatives of solid harmonics Numerical integration C.3 Reexpansion formulas D Selected properties of functions Rλ and Xλ D.1 Function R(ζ) D.2 Functions Rλ(ζ) and Xλ(ζ) E Elliptic harmonics and related theory E.1 Elliptic harmonics E.2 Reexpansion formulas E.3 Integral transforms E.4 Periodic complex potentials E.5 Evaluation of βk coefficients Bibliography Index