ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Microelectronics

دانلود کتاب میکروالکترونیک

Microelectronics

مشخصات کتاب

Microelectronics

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 1118165063, 9781118165065 
ناشر: Wiley 
سال نشر: 2014 
تعداد صفحات: 856
[849] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Microelectronics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب میکروالکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب میکروالکترونیک

میکروالکترونیک با کمک به دانش‌آموزان برای ایجاد درک شهودی از موضوع، به آنها می‌آموزد که مانند مهندسان فکر کنند. ویرایش دوم میکروالکترونیک رضوی تأکید مشخص خود را بر تجزیه و تحلیل از طریق بازرسی و ایجاد شهود طراحی دانش آموزان حفظ کرده است و مجموعه ای از ویژگی های آموزشی جدید را در خود جای داده است که آموزش و یادگیری از آن را آسان تر می کند، از جمله: نوارهای جانبی برنامه، مشکلات خود بررسی با پاسخ‌ها، مشکلات شبیه‌سازی با SPICE و MULTISIM، و مجموعه‌ای از مسائل توسعه‌یافته که بر اساس درجه سختی سازمان‌دهی شده و به وضوح با بخش‌های فصل خاصی مرتبط است.


توضیحاتی درمورد کتاب به خارجی

By helping students develop an intuitive understanding of the subject, Microelectronics teaches them to think like engineers. The second edition of Razavi’s Microelectronics retains its hallmark emphasis on analysis by inspection and building students’ design intuition, and it incorporates a host of new pedagogical features that make it easier to teach and learn from, including: application sidebars, self-check problems with answers, simulation problems with SPICE and MULTISIM, and an expanded problem set that is organized by degree of difficulty and more clearly associated with specific chapter sections.



فهرست مطالب

Cover
Title Page
Copyright Page
Dedication
About the Author
Preface
Acknowledgments
Contents
1 INTRODUCTION TO MICROELECTRONICS
	1.1 Electronics versus Microelectronics
	1.2 Examples of Electronic Systems
		1.2.1 Cellular Telephone
		1.2.2 Digital Camera
		1.2.3 Analog Versus Digital
2 BASIC PHYSICS OF SEMICONDUCTORS
	2.1 Semiconductor Materials and Their Properties
		2.1.1 Charge Carriers in Solids
		2.1.2 Modification of Carrier Densities
		2.1.3 Transport of Carriers
	2.2 pn Junction
		2.2.1 pn Junction in Equilibrium
		2.2.2 pn Junction Under Reverse Bias
		2.2.3 pn Junction Under Forward Bias
		2.2.4 I/V Characteristics
	2.3 Reverse Breakdown
		2.3.1 Zener Breakdown
		2.3.2 Avalanche Breakdown
	Problems
	Spice Problems
3 DIODE MODELS AND CIRCUITS
	3.1 Ideal Diode
		3.1.1 Initial Thoughts
		3.1.2 Ideal Diode
		3.1.3 Application Examples
	3.2 pn Junction as a Diode
	3.3 Additional Examples
	3.4 Large-Signal and Small-Signal Operation
	3.5 Applications of Diodes
		3.5.1 Half-Wave and Full-Wave Rectifiers
		3.5.2 Voltage Regulation
		3.5.3 Limiting Circuits
		3.5.4 Voltage Doublers
		3.5.5 Diodes as Level Shifters and Switches
	Problems
	Spice Problems
4 PHYSICS OF BIPOLAR TRANSISTORS
	4.1 General Considerations
	4.2 Structure of Bipolar Transistor
	4.3 Operation of Bipolar Transistor in Active Mode
		4.3.1 Collector Current
		4.3.2 Base and Emitter Currents
	4.4 Bipolar Transistor Models and Characteristics
		4.4.1 Large-Signal Model
		4.4.2 I/V Characteristics
		4.4.3 Concept of Transconductance
		4.4.4 Small-Signal Model
		4.4.5 Early Effect
	4.5 Operation of Bipolar Transistor in Saturation Mode
		4.6 The PNP Transistor
		4.6.1 Structure and Operation
		4.6.2 Large-Signal Model
		4.6.3 Small-Signal Model
	Problems
	Spice Problems
5 BIPOLAR AMPLIFIERS
	5.1 General Considerations
		5.1.1 Input and Output Impedances
		5.1.2 Biasing
		5.1.3 DC and Small-Signal Analysis
	5.2 Operating Point Analysis and Design
		5.2.1 Simple Biasing
		5.2.2 Resistive Divider Biasing
		5.2.3 Biasing with Emitter Degeneration
		5.2.4 Self-Biased Stage
		5.2.5 Biasing of PNP Transistors
	5.3 Bipolar Amplifier Topologies
		5.3.1 Common-Emitter Topology
		5.3.2 Common-Base Topology
		5.3.3 Emitter Follower
	Problems
	Spice Problems
6 PHYSICS OF MOS TRANSISTORS
	6.1 Structure of MOSFET
	6.2 Operation of MOSFET
		6.2.1 Qualitative Analysis
		6.2.2 Derivation of I-V Characteristics
		6.2.3 Channel-Length Modulation
		6.2.4 MOS Transconductance
		6.2.5 Velocity Saturation
		6.2.6 Other Second-Order Effects
	6.3 MOS Device Models
		6.3.1 Large-Signal Model
		6.3.2 Small-Signal Model
	6.4 PMOS Transistor
	6.5 CMOS Technology
	6.6 Comparison of Bipolar and MOS Devices
	Problems
	Spice Problems
7 CMOS AMPLIFIERS
	7.1 General Considerations
		7.1.1 MOS Amplifier Topologies
		7.1.2 Biasing
		7.1.3 Realization of Current Sources
	7.2 Common-Source Stage
		7.2.1 CS Core
		7.2.2 CS Stage with Current-Source Load
		7.2.3 CS Stage with Diode-Connected Load
		7.2.4 CS Stage with Degeneration
		7.2.5 CS Core with Biasing
	7.3 Common-Gate Stage
		7.3.1 CG Stage with Biasing
	7.4 Source Follower
		7.4.1 Source Follower Core
		7.4.2 Source Follower with Biasing
	Problems
	Spice Problems
8 OPERATIONAL AMPLIFIER AS A BLACK BOX
	8.1 General Considerations
	8.2 Op-Amp-Based Circuits
		8.2.1 Noninverting Amplifier
		8.2.2 Inverting Amplifier
		8.2.3 Integrator and Differentiator
		8.2.4 Voltage Adder
	8.3 Nonlinear Functions
		8.3.1 Precision Rectifier
		8.3.2 Logarithmic Amplifier
		8.3.3 Square-Root Amplifier
	8.4 Op Amp Nonidealities
		8.4.1 DC Offsets
		8.4.2 Input Bias Current
		8.4.3 Speed Limitations
		8.4.4 Finite Input and Output Impedances
	8.5 Design Examples
	Problems
	Spice Problems
9 CASCODE STAGES AND CURRENT MIRRORS
	9.1 Cascode Stage
		9.1.1 Cascode as a Current Source
		9.1.2 Cascode as an Amplifier
	9.2 Current Mirrors
		9.2.1 Initial Thoughts
		9.2.2 Bipolar Current Mirror
		9.2.3 MOS Current Mirror
	Problems
	Spice Problems
10 DIFFERENTIAL AMPLIFIERS
	10.1 General Considerations
		10.1.1 Initial Thoughts
		10.1.2 Differential Signals
		10.1.3 Differential Pair
	10.2 Bipolar Differential Pair
		10.2.1 Qualitative Analysis
		10.2.2 Large-Signal Analysis
		10.2.3 Small-Signal Analysis
	10.3 MOS Differential Pair
		10.3.1 Qualitative Analysis
		10.3.2 Large-Signal Analysis
		10.3.3 Small-Signal Analysis
	10.4 Cascode Differential Amplifiers
	10.5 Common-Mode Rejection
	10.6 Differential Pair with Active Load
		10.6.1 Qualitative Analysis
		10.6.2 Quantitative Analysis
	Problems
	Spice Problems
11 FREQUENCY RESPONSE
	11.1 Fundamental Concepts
		11.1.1 General Considerations
		11.1.2 Relationship Between Transfer Function and Frequency Response
		11.1.3 Bode's Rules
		11.1.4 Association of Poles with Nodes
		11.1.5 Miller's Theorem
		11.1.6 General Frequency Response
	11.2 High-Frequency Models of Transistors
		11.2.1 High-Frequency Model of Bipolar Transistor
		11.2.2 High-Frequency Model of MOSFET
		11.2.3 Transit Frequency
	11.3 Analysis Procedure
	11.4 Frequency Response of CE and CS Stages
		11.4.1 Low-Frequency Response
		11.4.2 High-Frequency Response
		11.4.3 Use of Miller's Theorem
		11.4.4 Direct Analysis
		11.4.5 Input Impedance
	11.5 Frequency Response of CB and CG Stages
		11.5.1 Low-Frequency Response
		11.5.2 High-Frequency Response
	11.6 Frequency Response of Followers
		11.6.1 Input and Output Impedances
	11.7 Frequency Response of Cascode Stage
		11.7.1 Input and Output Impedances
	11.8 Frequency Response of Differential Pairs
		11.8.1 Common-Mode Frequency Response
	Problems
	Spice Problems
12 FEEDBACK
	12.1 General Considerations
		12.1.1 Loop Gain
	12.2 Properties of Negative Feedback
		12.2.1 Gain Desensitization
		12.2.2 Bandwidth Extension
		12.2.3 Modification of I/O Impedances
		12.2.4 Linearity Improvement
	12.3 Types of Amplifiers
		12.3.1 Simple Amplifier Models
		12.3.2 Examples of Amplifier Types
	12.4 Sense and Return Techniques
	12.5 Polarity of Feedback
	12.6 Feedback Topologies
		12.6.1 Voltage-Voltage Feedback
		12.6.2 Voltage-Current Feedback
		12.6.3 Current-Voltage Feedback
		12.6.4 Current-Current Feedback
	12.7 Effect of Nonideal I/O Impedances
		12.7.1 Inclusion of I/O Effects
	12.8 Stability in Feedback Systems
		12.8.1 Review of Bode's Rules
		12.8.2 Problem of Instability
		12.8.3 Stability Condition
		12.8.4 Phase Margin
		12.8.5 Frequency Compensation
		12.8.6 Miller Compensation
	Problems
	Spice Problems
13 OSCILLATORS
	13.1 General Considerations
	13.2 Ring Oscillators
	13.3 LC Oscillators
		13.3.1 Parallel LC Tanks
		13.3.2 Cross-Coupled Oscillator
		13.3.3 Colpitts Oscillator
	13.4 Phase Shift Oscillator
	13.5 Wien-Bridge Oscillator
	13.6 Crystal Oscillators
		13.6.1 Crystal Model
		13.6.2 Negative-Resistance Circuit
		13.6.3 Crystal Oscillator Implementation
	Problems
	Spice Problems
14 OUTPUT STAGES AND POWER AMPLIFIERS
	14.1 General Considerations
	14.2 Emitter Follower as Power Amplifier
	14.3 Push-Pull Stage
	14.4 Improved Push-Pull Stage
		14.4.1 Reduction of Crossover Distortion
		14.4.2 Addition of CE Stage
	14.5 Large-Signal Considerations
		14.5.1 Biasing Issues
		14.5.2 Omission of PNP Power Transistor
		14.5.3 High-Fidelity Design
	14.6 Short-Circuit Protection
	14.7 Heat Dissipation
		14.7.1 Emitter Follower Power Rating
		14.7.2 Push-Pull Stage Power Rating
		14.7.3 Thermal Runaway
	14.8 Efficiency
		14.8.1 Efficiency of Emitter Follower
		14.8.2 Efficiency of Push-Pull Stage
	14.9 Power Amplifier Classes
	Problems
	Spice Problems
15 ANALOG FILTERS
	15.1 General Considerations
		15.1.1 Filter Characteristics
		15.1.2 Classification of Filters
		15.1.3 Filter Transfer Function
		15.1.4 Problem of Sensitivity
	15.2 First-Order Filters
	15.3 Second-Order Filters
		15.3.1 Special Cases
		15.3.2 RLC Realizations
	15.4 Active Filters
		15.4.1 Sallen and Key Filter
		15.4.2 Integrator-Based Biquads
		15.4.3 Biquads Using Simulated Inductors
	15.5 Approximation of Filter Response
		15.5.1 Butterworth Response
		15.5.2 Chebyshev Response
	Problems
	Spice Problems
16 DIGITAL CMOS CIRCUITS
	16.1 General Considerations
		16.1.1 Static Characterization of Gates
		16.1.2 Dynamic Characterization of Gates
		16.1.3 Power-Speed Trade-Off
	16.2 CMOS Inverter
		16.2.1 Initial Thoughts
		16.2.2 Voltage Transfer Characteristic
		16.2.3 Dynamic Characteristics
		16.2.4 Power Dissipation
	16.3 CMOS NOR and NAND Gates
		16.3.1 NOR Gate
		16.3.2 NAND Gate
	Problems
	Spice Problems
17 CMOS AMPLIFIERS
	17.1 General Considerations
		17.1.1 Input and Output Impedances
		17.1.2 Biasing
		17.1.3 DC and Small-Signal Analysis
	17.2 Operating Point Analysis and Design
		17.2.1 Simple Biasing
		17.2.2 Biasing with Source Degeneration
		17.2.3 Self-Biased Stage
		17.2.4 Biasing of PMOS Transistors
		17.2.5 Realization of Current Sources
	17.3 CMOS Amplifier Topologies
	17.4 Common-Source Topology
		17.4.1 CS Stage with Current-Source Load
		17.4.2 CS Stage with Diode-Connected Load
		17.4.3 CS Stage with Source Degeneration
		17.4.4 Common-Gate Topology
		17.4.5 Source Follower
	Problems
	Spice Problems
Appendix A INTRODUCTION TO SPICE
Index




نظرات کاربران