ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Microbial Technologies for Wastewater Recycling and Management: Recent Trends, Challenges, and Perspectives

دانلود کتاب فناوری‌های میکروبی برای بازیافت و مدیریت فاضلاب: روندها، چالش‌ها و دیدگاه‌های اخیر

Microbial Technologies for Wastewater Recycling and Management: Recent Trends, Challenges, and Perspectives

مشخصات کتاب

Microbial Technologies for Wastewater Recycling and Management: Recent Trends, Challenges, and Perspectives

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 9781032137582, 9781003231738 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 371 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 مگابایت 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Microbial Technologies for Wastewater Recycling and Management: Recent Trends, Challenges, and Perspectives به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فناوری‌های میکروبی برای بازیافت و مدیریت فاضلاب: روندها، چالش‌ها و دیدگاه‌های اخیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
Editors
Contributors
Section I: Introduction to Wastewater and Remediation Technologies
	1. Wastewater Pollution, Toxicity Profile, and Their Treatment Approaches: A Review
		1.1 Introduction
		1.2 The Unique Properties of Water Available Globally
			1.2.1 Biological Properties and Clinical Benefits of Water
			1.2.2 Physical Properties of Water
			1.2.3 The Chemical Properties of Water
		1.3 World\'s Water Resources and Their Distribution
		1.4 Water Pollution
		1.5 The Global Water Pollution
		1.6 Water Pollution in India
		1.7 Major Water Pollutants
		1.8 An Understanding of Wastewater Treatment Methods
		1.9 Waste Water Pollutants and Their Treatment Approaches with Nanotechnology and Nanomaterials
		1.10 Role of Nanoparticles in Water Decontamination
		1.11 Conclusion and Future Prospects
		Acknowledgement
		References
	2. Bioremediation: A Sustainable Approach Towards Clean Environment
		2.1 Introduction
		2.2 Toxicity of the Pollutants to Living Beings and the Environment
		2.3 Bioremediation
		2.4 Approaches of Bioremediation
			2.4.1 In-Situ Bioremediation
				2.4.1.1 Biosparging
				2.4.1.2 Bioslurping
				2.4.1.3 Bioventing
				2.4.1.4 Biostimulation
				2.4.1.5 Bioaugmentation
				2.4.1.6 Biopiling
			2.4.2 Ex-Situ Bioremediation
				2.4.2.1 Composting
				2.4.2.2 Land Farming
				2.4.2.3 Biopiles
		2.5 Phytoremediation
			2.5.1 Phytoextraction/Phytoaccumulation
			2.5.2 Phytostabilization
				2.5.2.1 Biochar
			2.5.3 Phytodegradation/Phytotransformation
			2.5.4 Phytovolatization
			2.5.5 Phytofiltration/Rhizofiltration
			2.5.6 Phytorestauration
				2.5.6.1 Advantages of Using Phytoremediation
		2.6 Microorganisms in Bioremediation
			2.6.1 Biomining
			2.6.2 Biooxidation
			2.6.3 Enzyme Mediated Bioremediation
		2.7 Bioreactor-Based Bioremediation
		2.8 Role of Biosurfactants in Bioremediation
		2.9 Application of Metagenomics in Bioremediation
		2.10 Constraints in Bioremediation
		2.11 Conclusion
		2.12 Future Scope
		References
	3. Constructed Wetland-Microbial Fuel Cell Technology During Wastewater Treatment: Progress, Challenges, and Opportunities
		3.1 Introduction
		3.2 Constructed Wetland and Microbial Fuel Cells\' Operational Mechanism
		3.3 Various Designs and Operations of Constructed Wetlands
		3.4 Factors Affecting the Operational Mechanisms
			3.4.1 Electrode Material and Separators
			3.4.2 Anode Materials
			3.4.3 Cathode Materials
			3.4.4 Separator
			3.4.5 Types of Substrates
			3.4.6 Constructed Wetland Plants
		3.5 Application of Constructed Wetland-Microbial Fuel Cells
		3.6 Advancement in Constructed Wetlands by Integration of Microbial Fuel Cell
		3.7 Challenges and Future Perspectives
		3.8 Conclusion
		References
	4. Genetically Engineered Microorganisms (GEMs) for a Sustainable Environment: A Promising Biotechnological Tool
		4.1 Introduction
		4.2 Microbial Bioremediation Is Influenced by a Variety of Factors
			4.2.1 Biological Factors
				4.2.1.1 Environmental Factors
		4.3 Types of Bio-Remediation
			4.3.1 Bio-Stimulation
			4.3.2 Bioaugmentation
			4.3.3 Biovent
			4.3.4 Biopiles
		4.4 Microbial Enzymes for Bioremediation
			4.4.1 Cytochrome P450
			4.4.2 Laccase
			4.4.3 Dehydrogenase
			4.4.4 Hydrolase
		4.5 Examples of Genetic Engineering of Microorganisms and Biodegradation
			4.5.1 Branched-Chain Aromatics
				4.5.1.1 Pseudomonas Putida Plasmid TOL Pathway
			4.5.2 Chlorinated Compounds
				4.5.2.1 Chlorobenzoate
				4.5.2.2 Polychlorinated Biphenyls (PCBs) and Chlorinated Biphenyls
				4.5.2.3 Trichlorethylene (TCE)
		4.6 Recombinant DNA (r DNA) Technology for Microorganisms in Bioremediation
		4.7 Bioremediation Potential
		4.8 Bioremediation Impact on Human and Environmental Health
		4.9 Conclusion
		References
	5. Performance of Anammox in Industrial Wastewater Treatment: Recent Advances and Future Prospects
		5.1 Introduction of Anammox
		5.2 Contribution of Anammox in the Wastewater Treatment Plants (WWTPs)
		5.3 Industrial Wastewater Characteristic
			5.3.1 Biological Nitrogen Removal Treatments in Industrial Wastewater
				5.3.1.1 Conventional Nitrification-Denitrification Process
				5.3.1.2 Nitritation-Denitritation Process
				5.3.1.3 Partial Nitritation/Anammox (PN/A) Process
		5.4 Anammox in Industrial Wastewater
		5.5 Challenges
		5.6 The Opportunity and Future Prospects
		5.7 Conclusion
		Acknowledgements
		References
	6. Vermifiltration Technology: Earthworm Assisted Green Technology for Wastewater Treatment
		6.1 Introduction
		6.2 Vermifiltration Technology
			6.2.1 Earthworms: Earth\'s Trash Managers
			6.2.2 Design of the Vermifilter
			6.2.3 Types of Earthworms
			6.2.4 Hydraulic Retention Time (HRT) and Hydraulic Loading Rate (HLR)
		6.3 Mechanism of Vermifiltration Technology for Wastewater Treatment
		6.4 Integration of Earthworms in Other Nature-Based Solutions
		6.5 Case Studies
			6.5.1 Integration of Constructed Wetlands with Vermifilter to Treat Feedlot Runoff Wastewater – A Case Study in the US
			6.5.2 Integration of Vermifiltration and Hydroponic System for Swine Wastewater Treatment – A Case Study in Portugal (Ispolnov et al., 2021)
			6.5.3 Indian Institute of Technology (IIT) Bhubaneshwar on Macrophyte Assisted Vermifilter for Dairy Wastewater (Samal et al., 2018)
			6.5.4 Earthworms Help in Dealing with the Clogging Issue of HSFCWs – A Case Study of Australia
			6.5.5 Potential Effects of Applying Earthworms Into Constructed Wetlands Ecosystem – A Case Study in Thailand
			6.5.6 INNOQUA Project (2020)
		6.6 Advantages of the Integration
		References
	7. Amalgamation of Constructed Wetland and Microbial Fuel Cell Systems as a Sustainable Approach Towards Wastewater Treatment and Energy Recovery
		7.1 Introduction
		7.2 Constructed Wetland and Microbial Fuel Cell
			7.2.1 Constructed Wetlands and Its Removal Mechanism
				7.2.1.1 Removal Mechanism in CW
			7.2.2 Microbial Fuel Cell and Its Removal Mechanism
			7.2.3 Integration of CW-MFC
		7.3 Design Considerations in Constructed Wetland and Microbial Fuel Cell
			7.3.1 Vegetation in CWs
			7.3.2 Substrate
			7.3.3 Materials of Electrode
			7.3.4 Impacts of Vegetation and Media on Electricity Production
		7.4 Current Scenario and Advancement in CW-MFCs
			7.4.1 Use of Integrated CW-MFC for Various Wastewater Treatment
			7.4.2 Resource Recovery Options from Integrated CW-MFCs
			7.4.3 Comparison of CW-MFC with Other Treatment Technologies
		7.5 Future Scope and Challenges
		7.6 Conclusion
		Abbreviation
		Acknowledgments
		References
	8. Indigenous Microorganisms: An Effective In-Situ Tool to Mitigate Organic Pollutants from Contaminated Sites
		8.1 Occurrence of Organic Contaminants
		8.2 Conventional Techniques for Remediation
		8.3 Indigenous Microorganisms for Remediation
		8.4 Bioremediation Prospects: In-Situ and Ex-Situ
			8.4.1 Bioattenuation: Natural Method of Degradation
			8.4.2 Biostimulation: Input of Correct Nutrient Ratio
			8.4.3 Bioaugmentation: When Locals Take Up the Task?
		8.5 Advanced Technologies to Improve In-Situ Remediation
			8.5.1 Genetically Modified Microbes (GEMs)
			8.5.2 Biofilm/Bio-Surfactants Formation
				8.5.2.1 Biofilm Formation
				8.5.2.2 Biosurfactants Production
			8.5.3 Nano-Bioremediation
			8.5.4 Metagenomics Approach
		8.6 Conclusion
		Acknowledgements
		References
	9. Bioaugmentation of Petroleum Hydrocarbons and Polycyclic Aromatic Hydrocarbons: A Review
		9.1 Introduction
		9.2 Bioaugmentation
		9.3 Biochemistry of Bioaugmentation Technique
			9.3.1 Dehalogenation
			9.3.2 Fragmentation
			9.3.3 Mineralization
				9.3.3.1 Aerobic Mode of Degradation
				9.3.3.2 Anaerobic Mode of Degradation
		9.4 Factors Affecting Bioaugmentation
			9.4.1 Water Quality
			9.4.2 Temperature
			9.4.3 pH
			9.4.4 Organic Matter
			9.4.5 Redox Potential and Oxygen Content
			9.4.6 Nutrients
			9.4.7 Plant Root Exudates
		9.5 Bioaugmentation of Total Petroleum Hydrocarbons (TPH)
			9.5.1 Bioaugmentation of Polycyclic Aromatic Hydrocarbons (PAHs)
				9.5.1.1 Bacterial Mechanisms of PAH Metabolism
				9.5.1.2 Fungal Mechanisms of PAH Metabolism
		9.6 Conclusion
		References
	10. Microbial Biofilms for Efficient Biological Wastewater Treatment: Mechanisms, Challenges, Opportunities, and Future Perspectives
		10.1 Introduction
		10.2 Mechanism of Biofilm Formation
			10.2.1 Extracellular Polymeric Substances (EPS)
			10.2.2 Quorum Sensing in Biofilm Formation
			10.2.3 Different Approaches for Studying Biofilm Development
		10.3 Factors Influencing Biofilm Development
			10.3.1 Abiotic Factors
			10.3.2 Surface Topography
			10.3.3 Velocity and Turbulence
			10.3.4 Biotic Factors
		10.4 Biofilm Technologies in Wastewater Treatment
			10.4.1 Trickling Filters
			10.4.2 Rotating Biological Contactor
			10.4.3 Moving Bed Biofilm Reactor
			10.4.4 Biofilm Airlift Suspension Reactors
			10.4.5 Sequencing Batch Biofilm Reactor
			10.4.6 Biofilm-Based Membrane Bioreactors
		10.5 Nutrient Removal in Wastewater Treatment System by Biofilm Technologies
			10.5.1 Nitrogen Removal
			10.5.2 Phosphorous Removal
		10.6 High Strength, Recalcitrant Wastewater Treatment Using Biofilm Technologies
		10.7 Cost Factors
		10.8 Future Biofilm Processes: Targets and Outlook
		10.9 Conclusion
		Acknowledgement
		References
	11. Genetically Engineered Microbes in Bioremediation of Environmental Contaminants
		11.1 Introduction
		11.2 Bioremediation
			11.2.1 Types of Bioremediation
				11.2.1.1 Ex-Situ
				11.2.1.2 In-Situ
		11.3 Natural Microbes in Bioremediation
			11.3.1 Bacteria
			11.3.2 Fungi
			11.3.3 Algae
		11.4 Genetic Engineering in Bioremediation
			11.4.1 Advance Methods in Genetic Engineering
				11.4.1.1 Zinc Finger Nuclease (ZNFs)
				11.4.1.2 TALENs Based System
				11.4.1.3 CRISPR-CAS System
				11.4.1.4 Sleeping Beauty System
				11.4.1.5 Piggybac System
		11.5 Common Genes Involved in Bioremediation
		11.6 Genetically Engineered Microbes in Bioremediation
			11.6.1 Genetically Engineered Bacteria in Bioremediation
			11.6.2 Genetically Engineered Fungi in Bioremediation
			11.6.3 Genetically Engineered Algae in Bioremediation
		11.7 Major Issues with Genetically Engineered Microbes in Bioremediation
		11.8 Future Approach and Applications of GMM in Bioremediation
		11.9 Conclusion
		References
	12. Microalgae: Tool for the Removal of Emerging Contaminants from the Industrial Wastewater
		12.1 Introduction
		12.2 Types of Wastewater and Its Sources
		12.3 Role of Microalgae in Wastewater Management
		12.4 Treatment of Wastewaters Using Microalgae
		12.5 Different Products of Microalgae and Its Application
		12.6 Challenges in Microalgae Waste Management Technique
		12.7 Role of Other Microorganisms as Co-Worker with Microalgae
		12.8 Conclusion
		References
Section II: Microbial Treatment of Wastewater/Wastewater Pollutants
	13. Microbial Reclamation of Pulp and Paper-Making Industry Wastewater: Electricity Generation, Value Added Co-Product Recovery and Waste Valorization
		13.1 Introduction
		13.2 Wastewater Generation in Paper and Pulp Making Industry
		13.3 Need for a Sustainable Technique for Wastewater from Pulp and Paper-Making Industry
		13.4 Microbial Fuel Cells and Its Mechanism of Electricity Production
			13.4.1 Microbial Fuel Cells for Wastewater from Paper and Pulp Industry
			13.4.2 Limitations of MFCs Using Wastewater from Paper and Pulp Industry
		13.5 Strategies to Enhance Electricity Production from Paper and Pulp Industry Wastewater
			13.5.1 Integration of Constructed Wetlands with MFCs
			13.5.2 Exoelectrogens for Electricity Production
			13.5.3 Substrate Modification in MFCs
			13.5.4 Improvement in Performance of MFC
		13.6 Factors Influencing MFC Performance from Paper and Pulp Industry Waste Water
		13.7 Co-Products Recovery from Wastewater of Pulp and Paper-Making Industry
		13.8 Other Techniques for Energy Generation from Paper and Pulp Wastewater
		13.9 Conclusion
		References
	14. Microbial Treatment of Food Processing Wastewater and Recovery of Value-Added Bioactive Compounds: Current Scenario, Challenges, and Future Prospects
		14.1 Introduction
		14.2 The Food Processing Industry
		14.3 Different Types of Consumables Undergoing Industrial Processing
		14.4 Characteristics of Effluents from Food Processing Industries
			14.4.1 pH of the Discharge Stream
			14.4.2 Temperature
			14.4.3 BOD (Biological Oxygen Demand)
			14.4.4 COD (Chemical Oxygen Demand)
			14.4.5 Total Suspended Solids
			14.4.6 Nitrogen Content
			14.4.7 Phosphorous Content
			14.4.8 Color and Odor
		14.5 Treatment of Food Processing Wastewater
			14.5.1 Physical Treatment
			14.5.2 Chemical Treatment
			14.5.3 Microbial Treatment
				14.5.3.1 Anaerobic Digestion
				14.5.3.2 Aerobic Treatment for Wastewater
				14.5.3.3 Micro-Algal Based Process
		14.6 Role of Microorganisms in Wastewater Treatment
		14.7 Recovery of Value Added Products After Treatment
		14.8 Challenges Faced in Effluent Treatment
		14.9 Conclusion and Future Perspective
		References
	15. Reclamation of Lead Acid Battery Processing Wastewater Through Microbes and Waste Valorization: Progress, Challenges, and Future Prospects
		15.1 Introduction
		15.2 Lead Acid Battery (LAB) Processing Industry and Its Solid-Liquid Waste
		15.3 Effluent Compositions Discharged from Lead Acid Battery Industry
		15.4 Carcinogenic Effects of Compositions of LAB Wastewater
		15.5 Advancement of Technologies Used for LAB Processing Wastewater Treatment
			15.5.1 Coagulation and Flocculantion-Based Treatment
			15.5.2 Layered Sedimentation
			15.5.3 Ion Exchange
			15.5.4 Photocatalytic Process
			15.5.5 Adsorption Process
		15.6 Bioremidiation: A Novel Technology Used for Lead Acid Battery Processing Wastewater Treatment
			15.6.1 Utilisation of Bacterial Species
		15.7 Utilisation of Microalgae
		15.8 Conclusion
		References
	16. Microbial Approaches for Pharmaceutical Wastewater Recycling and Management for Sustainable Development: Present Status, Challenges, and Opportunities
		16.1 Introduction
		16.2 Outline of Pharmaceutical Production and Present Status
		16.3 Treatment of Pharmaceutical Wastewater
			16.3.1 Conventional Method
				16.3.1.1 Physicochemical Treatment
				16.3.1.2 Coagulation and Precipitation
				16.3.1.3 Advanced Oxidation Process (AOP)
				16.3.1.4 Adsorption
				16.3.1.5 Membrane Separation
		16.4 Biological Treatment of Pharmaceutical Wastewater
			16.4.1 Anaerobic Treatment
				16.4.1.1 UASB Reactors (Upflow Anaerobic Sludge Blanket)
				16.4.1.2 Anaerobic Fixed Film Reactor (AFFR)
				16.4.1.3 Fixed-Film Anaerobic Reactor (AFFR)
			16.4.2 Aerobic Treatment
			16.4.3 Hybrid Anaerobic/Aerobic Systems
			16.4.4 Fungal Treatment
			16.4.5 Treatment Through Bacteria
			16.4.6 Phytoremediation
			16.4.7 Membrane Bioreactor (MBR)
		16.5 Sustainable Development of Microbial Pharmaceutical Wastewater Treatment: Challenges and Scope
			16.5.1 Processes of Waste Recovery
		16.6 Recommendations and Future Prospects
		16.7 Conclusion
		References
	17. Biotechnological Approaches for Microbial Treatment of Textile Wastewater and Resource Recovery: Opportunities, Challenges, and Future Perspectives
		17.1 Introduction
		17.2 Textile Wastewater Treatment Technology
			17.2.1 Physico-Chemical Treatment Methods
			17.2.2 Biological Treatment Methods
			17.2.3 Enzymatic Treatment
		17.3 Hybrid Biotechnological Approaches for Textile Wastewater Treatment
			17.3.1 Microbial Fuel Cell (MFC) Technology
			17.3.2 Membrane Bioreactor
		17.4 Nanobiotechnogy
		17.5 Conclusions
		References
	18. Strategic Re-Use and Recycling of Grey Water Through Treatment Systems for Resource Recovery
		18.1 Introduction
		18.2 Sources of Grey Water
		18.3 Composition and Characteristics of Grey Water
		18.4 Physical, Chemical and Biological Characteristics of Grey Water
		18.5 Parameters Affecting Characteristics of Grey Water
		18.6 Treatment of Grey Water
			18.6.1 Primary Treatment
			18.6.2 Secondary Treatment
			18.6.3 Tertiary Treatment
				18.6.3.1 Treatment Systems
		18.8 Re-Use of Grey Water
		18.9 Conclusion
		References
	19. A Sustainable Approach of Biodiesel Production and Water Treatment Using Oleaginous Microorganisms
		19.1 Oleaginous Organisms for Biodiesel Production
			19.1.1 Genetic Modifications for the Production of Biodiesel
		19.2 Type of Oleaginous Microorganisms for Wastewater Treatment
			19.2.1 Oleaginous Yeast
			19.2.2 Oleaginous Microalgae
			19.2.3 Oleaginous Bacteria and Fungi
		19.3 Treatment of Wastewaters by Oleaginous Microorganisms
			19.3.1 Treatment of Municipal Wastewater (Sludge)
			19.3.2 Treatment of Food Industry Wastewater
			19.3.3 Treatment of Fermentation Wastewater
		19.4 Use of Lignocellulosic Biomass by Oleaginous Microorganisms
		19.5 Reducing Sugars as a Source for Fatty Acid Production
		19.6 Oleaginous Organisms and Some Genetic Modifications
		19.7 Conclusions
		References
	20. Biological Treatment and Value-Added Products Recovery from Wastewaters Discharged from Food Processing Industries: A Review
		20.1 Introduction
		20.2 Characteristics and Treatment of Food Processing Wastewater
		20.3 Meat Processing Wastewater
			20.3.1 Microbial Treatment
			20.3.2 Composition of Meat Wastewater
				20.3.2.1 Primary Treatment
				20.3.2.2 Secondary Technique
			20.3.3 Role of Microbes in Remediation
		20.4 Beverage Wastewater Processing
			20.4.1 Microbial Treatment
				20.4.1.1 Anaerobic Wastewater Treatment
				20.4.1.2 Anaerobic Digestion Treatment of Wastewater
				20.4.1.3 Aerobic Wastewater Treatment
			20.4.2 Beverage Wastewater Composition
			20.4.3 Role of Microbes in Remediation
				20.4.3.1 Bacteria
				20.4.3.2 Protozoa
				20.4.3.3 Fungi
				20.4.3.4 Algae
			20.4.4 Perspective in Nutrient Recovery from Beverage Wastewater
		20.5 Dairy Processing Wastewater
			20.5.1 Microbial Treatment
			20.5.2 Composition of Dairy Wastewater
			20.5.1 Role of Microbes in Remediation
				20.5.1.1 Perspectives in Nutrient Recovery from Dairy Wastewater
		20.6 High Value Products from Microbes Grown on Wastewater
			20.6.1 Bio-Hydrogen
			20.6.2 Bioplastic
			20.6.3 Exopolysaccharides
			20.6.4 Bio-Fertilizer
			20.6.5 Biodiesel
		20.7 Recovery of Value-Added Bioactive Compounds from Microbial Treatment Food Processing Wastewater
		20.8 Conclusion
		References
	21. Integrated Wastewater Treatment and Biofuel Production Using Microalgae
		21.1 Introduction
		21.2 Application of Microalgae for Wastewater Treatment
			21.2.1 Municipal Wastewater
			21.2.2 Agricultural Wastewater
			21.2.3 Industrial Wastewater
		21.3 Use of Algal Biomass for Biofuels
			21.3.1 Transesterification
		21.4 Anaerobic Digestion
			21.4.1 Fermentation
			21.4.2 Torrefaction
			21.4.3 Pyrolysis
			21.4.5 Hydrothermal Processing
			21.4.5 Gasification
		21.5 Economic Prospective
			21.5.1 Life Cycle Assessment
			21.5.2 Techno-Economic Analysis
		21.6 Policies and Incentives for Algal Biofuel
		21.7 Conclusions
		References
Index




نظرات کاربران