دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: VINEET KUMAR. Joginder Singh
سری:
ISBN (شابک) : 9781032137582, 9781003231738
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 371
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Microbial Technologies for Wastewater Recycling and Management: Recent Trends, Challenges, and Perspectives به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوریهای میکروبی برای بازیافت و مدیریت فاضلاب: روندها، چالشها و دیدگاههای اخیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Editors Contributors Section I: Introduction to Wastewater and Remediation Technologies 1. Wastewater Pollution, Toxicity Profile, and Their Treatment Approaches: A Review 1.1 Introduction 1.2 The Unique Properties of Water Available Globally 1.2.1 Biological Properties and Clinical Benefits of Water 1.2.2 Physical Properties of Water 1.2.3 The Chemical Properties of Water 1.3 World\'s Water Resources and Their Distribution 1.4 Water Pollution 1.5 The Global Water Pollution 1.6 Water Pollution in India 1.7 Major Water Pollutants 1.8 An Understanding of Wastewater Treatment Methods 1.9 Waste Water Pollutants and Their Treatment Approaches with Nanotechnology and Nanomaterials 1.10 Role of Nanoparticles in Water Decontamination 1.11 Conclusion and Future Prospects Acknowledgement References 2. Bioremediation: A Sustainable Approach Towards Clean Environment 2.1 Introduction 2.2 Toxicity of the Pollutants to Living Beings and the Environment 2.3 Bioremediation 2.4 Approaches of Bioremediation 2.4.1 In-Situ Bioremediation 2.4.1.1 Biosparging 2.4.1.2 Bioslurping 2.4.1.3 Bioventing 2.4.1.4 Biostimulation 2.4.1.5 Bioaugmentation 2.4.1.6 Biopiling 2.4.2 Ex-Situ Bioremediation 2.4.2.1 Composting 2.4.2.2 Land Farming 2.4.2.3 Biopiles 2.5 Phytoremediation 2.5.1 Phytoextraction/Phytoaccumulation 2.5.2 Phytostabilization 2.5.2.1 Biochar 2.5.3 Phytodegradation/Phytotransformation 2.5.4 Phytovolatization 2.5.5 Phytofiltration/Rhizofiltration 2.5.6 Phytorestauration 2.5.6.1 Advantages of Using Phytoremediation 2.6 Microorganisms in Bioremediation 2.6.1 Biomining 2.6.2 Biooxidation 2.6.3 Enzyme Mediated Bioremediation 2.7 Bioreactor-Based Bioremediation 2.8 Role of Biosurfactants in Bioremediation 2.9 Application of Metagenomics in Bioremediation 2.10 Constraints in Bioremediation 2.11 Conclusion 2.12 Future Scope References 3. Constructed Wetland-Microbial Fuel Cell Technology During Wastewater Treatment: Progress, Challenges, and Opportunities 3.1 Introduction 3.2 Constructed Wetland and Microbial Fuel Cells\' Operational Mechanism 3.3 Various Designs and Operations of Constructed Wetlands 3.4 Factors Affecting the Operational Mechanisms 3.4.1 Electrode Material and Separators 3.4.2 Anode Materials 3.4.3 Cathode Materials 3.4.4 Separator 3.4.5 Types of Substrates 3.4.6 Constructed Wetland Plants 3.5 Application of Constructed Wetland-Microbial Fuel Cells 3.6 Advancement in Constructed Wetlands by Integration of Microbial Fuel Cell 3.7 Challenges and Future Perspectives 3.8 Conclusion References 4. Genetically Engineered Microorganisms (GEMs) for a Sustainable Environment: A Promising Biotechnological Tool 4.1 Introduction 4.2 Microbial Bioremediation Is Influenced by a Variety of Factors 4.2.1 Biological Factors 4.2.1.1 Environmental Factors 4.3 Types of Bio-Remediation 4.3.1 Bio-Stimulation 4.3.2 Bioaugmentation 4.3.3 Biovent 4.3.4 Biopiles 4.4 Microbial Enzymes for Bioremediation 4.4.1 Cytochrome P450 4.4.2 Laccase 4.4.3 Dehydrogenase 4.4.4 Hydrolase 4.5 Examples of Genetic Engineering of Microorganisms and Biodegradation 4.5.1 Branched-Chain Aromatics 4.5.1.1 Pseudomonas Putida Plasmid TOL Pathway 4.5.2 Chlorinated Compounds 4.5.2.1 Chlorobenzoate 4.5.2.2 Polychlorinated Biphenyls (PCBs) and Chlorinated Biphenyls 4.5.2.3 Trichlorethylene (TCE) 4.6 Recombinant DNA (r DNA) Technology for Microorganisms in Bioremediation 4.7 Bioremediation Potential 4.8 Bioremediation Impact on Human and Environmental Health 4.9 Conclusion References 5. Performance of Anammox in Industrial Wastewater Treatment: Recent Advances and Future Prospects 5.1 Introduction of Anammox 5.2 Contribution of Anammox in the Wastewater Treatment Plants (WWTPs) 5.3 Industrial Wastewater Characteristic 5.3.1 Biological Nitrogen Removal Treatments in Industrial Wastewater 5.3.1.1 Conventional Nitrification-Denitrification Process 5.3.1.2 Nitritation-Denitritation Process 5.3.1.3 Partial Nitritation/Anammox (PN/A) Process 5.4 Anammox in Industrial Wastewater 5.5 Challenges 5.6 The Opportunity and Future Prospects 5.7 Conclusion Acknowledgements References 6. Vermifiltration Technology: Earthworm Assisted Green Technology for Wastewater Treatment 6.1 Introduction 6.2 Vermifiltration Technology 6.2.1 Earthworms: Earth\'s Trash Managers 6.2.2 Design of the Vermifilter 6.2.3 Types of Earthworms 6.2.4 Hydraulic Retention Time (HRT) and Hydraulic Loading Rate (HLR) 6.3 Mechanism of Vermifiltration Technology for Wastewater Treatment 6.4 Integration of Earthworms in Other Nature-Based Solutions 6.5 Case Studies 6.5.1 Integration of Constructed Wetlands with Vermifilter to Treat Feedlot Runoff Wastewater – A Case Study in the US 6.5.2 Integration of Vermifiltration and Hydroponic System for Swine Wastewater Treatment – A Case Study in Portugal (Ispolnov et al., 2021) 6.5.3 Indian Institute of Technology (IIT) Bhubaneshwar on Macrophyte Assisted Vermifilter for Dairy Wastewater (Samal et al., 2018) 6.5.4 Earthworms Help in Dealing with the Clogging Issue of HSFCWs – A Case Study of Australia 6.5.5 Potential Effects of Applying Earthworms Into Constructed Wetlands Ecosystem – A Case Study in Thailand 6.5.6 INNOQUA Project (2020) 6.6 Advantages of the Integration References 7. Amalgamation of Constructed Wetland and Microbial Fuel Cell Systems as a Sustainable Approach Towards Wastewater Treatment and Energy Recovery 7.1 Introduction 7.2 Constructed Wetland and Microbial Fuel Cell 7.2.1 Constructed Wetlands and Its Removal Mechanism 7.2.1.1 Removal Mechanism in CW 7.2.2 Microbial Fuel Cell and Its Removal Mechanism 7.2.3 Integration of CW-MFC 7.3 Design Considerations in Constructed Wetland and Microbial Fuel Cell 7.3.1 Vegetation in CWs 7.3.2 Substrate 7.3.3 Materials of Electrode 7.3.4 Impacts of Vegetation and Media on Electricity Production 7.4 Current Scenario and Advancement in CW-MFCs 7.4.1 Use of Integrated CW-MFC for Various Wastewater Treatment 7.4.2 Resource Recovery Options from Integrated CW-MFCs 7.4.3 Comparison of CW-MFC with Other Treatment Technologies 7.5 Future Scope and Challenges 7.6 Conclusion Abbreviation Acknowledgments References 8. Indigenous Microorganisms: An Effective In-Situ Tool to Mitigate Organic Pollutants from Contaminated Sites 8.1 Occurrence of Organic Contaminants 8.2 Conventional Techniques for Remediation 8.3 Indigenous Microorganisms for Remediation 8.4 Bioremediation Prospects: In-Situ and Ex-Situ 8.4.1 Bioattenuation: Natural Method of Degradation 8.4.2 Biostimulation: Input of Correct Nutrient Ratio 8.4.3 Bioaugmentation: When Locals Take Up the Task? 8.5 Advanced Technologies to Improve In-Situ Remediation 8.5.1 Genetically Modified Microbes (GEMs) 8.5.2 Biofilm/Bio-Surfactants Formation 8.5.2.1 Biofilm Formation 8.5.2.2 Biosurfactants Production 8.5.3 Nano-Bioremediation 8.5.4 Metagenomics Approach 8.6 Conclusion Acknowledgements References 9. Bioaugmentation of Petroleum Hydrocarbons and Polycyclic Aromatic Hydrocarbons: A Review 9.1 Introduction 9.2 Bioaugmentation 9.3 Biochemistry of Bioaugmentation Technique 9.3.1 Dehalogenation 9.3.2 Fragmentation 9.3.3 Mineralization 9.3.3.1 Aerobic Mode of Degradation 9.3.3.2 Anaerobic Mode of Degradation 9.4 Factors Affecting Bioaugmentation 9.4.1 Water Quality 9.4.2 Temperature 9.4.3 pH 9.4.4 Organic Matter 9.4.5 Redox Potential and Oxygen Content 9.4.6 Nutrients 9.4.7 Plant Root Exudates 9.5 Bioaugmentation of Total Petroleum Hydrocarbons (TPH) 9.5.1 Bioaugmentation of Polycyclic Aromatic Hydrocarbons (PAHs) 9.5.1.1 Bacterial Mechanisms of PAH Metabolism 9.5.1.2 Fungal Mechanisms of PAH Metabolism 9.6 Conclusion References 10. Microbial Biofilms for Efficient Biological Wastewater Treatment: Mechanisms, Challenges, Opportunities, and Future Perspectives 10.1 Introduction 10.2 Mechanism of Biofilm Formation 10.2.1 Extracellular Polymeric Substances (EPS) 10.2.2 Quorum Sensing in Biofilm Formation 10.2.3 Different Approaches for Studying Biofilm Development 10.3 Factors Influencing Biofilm Development 10.3.1 Abiotic Factors 10.3.2 Surface Topography 10.3.3 Velocity and Turbulence 10.3.4 Biotic Factors 10.4 Biofilm Technologies in Wastewater Treatment 10.4.1 Trickling Filters 10.4.2 Rotating Biological Contactor 10.4.3 Moving Bed Biofilm Reactor 10.4.4 Biofilm Airlift Suspension Reactors 10.4.5 Sequencing Batch Biofilm Reactor 10.4.6 Biofilm-Based Membrane Bioreactors 10.5 Nutrient Removal in Wastewater Treatment System by Biofilm Technologies 10.5.1 Nitrogen Removal 10.5.2 Phosphorous Removal 10.6 High Strength, Recalcitrant Wastewater Treatment Using Biofilm Technologies 10.7 Cost Factors 10.8 Future Biofilm Processes: Targets and Outlook 10.9 Conclusion Acknowledgement References 11. Genetically Engineered Microbes in Bioremediation of Environmental Contaminants 11.1 Introduction 11.2 Bioremediation 11.2.1 Types of Bioremediation 11.2.1.1 Ex-Situ 11.2.1.2 In-Situ 11.3 Natural Microbes in Bioremediation 11.3.1 Bacteria 11.3.2 Fungi 11.3.3 Algae 11.4 Genetic Engineering in Bioremediation 11.4.1 Advance Methods in Genetic Engineering 11.4.1.1 Zinc Finger Nuclease (ZNFs) 11.4.1.2 TALENs Based System 11.4.1.3 CRISPR-CAS System 11.4.1.4 Sleeping Beauty System 11.4.1.5 Piggybac System 11.5 Common Genes Involved in Bioremediation 11.6 Genetically Engineered Microbes in Bioremediation 11.6.1 Genetically Engineered Bacteria in Bioremediation 11.6.2 Genetically Engineered Fungi in Bioremediation 11.6.3 Genetically Engineered Algae in Bioremediation 11.7 Major Issues with Genetically Engineered Microbes in Bioremediation 11.8 Future Approach and Applications of GMM in Bioremediation 11.9 Conclusion References 12. Microalgae: Tool for the Removal of Emerging Contaminants from the Industrial Wastewater 12.1 Introduction 12.2 Types of Wastewater and Its Sources 12.3 Role of Microalgae in Wastewater Management 12.4 Treatment of Wastewaters Using Microalgae 12.5 Different Products of Microalgae and Its Application 12.6 Challenges in Microalgae Waste Management Technique 12.7 Role of Other Microorganisms as Co-Worker with Microalgae 12.8 Conclusion References Section II: Microbial Treatment of Wastewater/Wastewater Pollutants 13. Microbial Reclamation of Pulp and Paper-Making Industry Wastewater: Electricity Generation, Value Added Co-Product Recovery and Waste Valorization 13.1 Introduction 13.2 Wastewater Generation in Paper and Pulp Making Industry 13.3 Need for a Sustainable Technique for Wastewater from Pulp and Paper-Making Industry 13.4 Microbial Fuel Cells and Its Mechanism of Electricity Production 13.4.1 Microbial Fuel Cells for Wastewater from Paper and Pulp Industry 13.4.2 Limitations of MFCs Using Wastewater from Paper and Pulp Industry 13.5 Strategies to Enhance Electricity Production from Paper and Pulp Industry Wastewater 13.5.1 Integration of Constructed Wetlands with MFCs 13.5.2 Exoelectrogens for Electricity Production 13.5.3 Substrate Modification in MFCs 13.5.4 Improvement in Performance of MFC 13.6 Factors Influencing MFC Performance from Paper and Pulp Industry Waste Water 13.7 Co-Products Recovery from Wastewater of Pulp and Paper-Making Industry 13.8 Other Techniques for Energy Generation from Paper and Pulp Wastewater 13.9 Conclusion References 14. Microbial Treatment of Food Processing Wastewater and Recovery of Value-Added Bioactive Compounds: Current Scenario, Challenges, and Future Prospects 14.1 Introduction 14.2 The Food Processing Industry 14.3 Different Types of Consumables Undergoing Industrial Processing 14.4 Characteristics of Effluents from Food Processing Industries 14.4.1 pH of the Discharge Stream 14.4.2 Temperature 14.4.3 BOD (Biological Oxygen Demand) 14.4.4 COD (Chemical Oxygen Demand) 14.4.5 Total Suspended Solids 14.4.6 Nitrogen Content 14.4.7 Phosphorous Content 14.4.8 Color and Odor 14.5 Treatment of Food Processing Wastewater 14.5.1 Physical Treatment 14.5.2 Chemical Treatment 14.5.3 Microbial Treatment 14.5.3.1 Anaerobic Digestion 14.5.3.2 Aerobic Treatment for Wastewater 14.5.3.3 Micro-Algal Based Process 14.6 Role of Microorganisms in Wastewater Treatment 14.7 Recovery of Value Added Products After Treatment 14.8 Challenges Faced in Effluent Treatment 14.9 Conclusion and Future Perspective References 15. Reclamation of Lead Acid Battery Processing Wastewater Through Microbes and Waste Valorization: Progress, Challenges, and Future Prospects 15.1 Introduction 15.2 Lead Acid Battery (LAB) Processing Industry and Its Solid-Liquid Waste 15.3 Effluent Compositions Discharged from Lead Acid Battery Industry 15.4 Carcinogenic Effects of Compositions of LAB Wastewater 15.5 Advancement of Technologies Used for LAB Processing Wastewater Treatment 15.5.1 Coagulation and Flocculantion-Based Treatment 15.5.2 Layered Sedimentation 15.5.3 Ion Exchange 15.5.4 Photocatalytic Process 15.5.5 Adsorption Process 15.6 Bioremidiation: A Novel Technology Used for Lead Acid Battery Processing Wastewater Treatment 15.6.1 Utilisation of Bacterial Species 15.7 Utilisation of Microalgae 15.8 Conclusion References 16. Microbial Approaches for Pharmaceutical Wastewater Recycling and Management for Sustainable Development: Present Status, Challenges, and Opportunities 16.1 Introduction 16.2 Outline of Pharmaceutical Production and Present Status 16.3 Treatment of Pharmaceutical Wastewater 16.3.1 Conventional Method 16.3.1.1 Physicochemical Treatment 16.3.1.2 Coagulation and Precipitation 16.3.1.3 Advanced Oxidation Process (AOP) 16.3.1.4 Adsorption 16.3.1.5 Membrane Separation 16.4 Biological Treatment of Pharmaceutical Wastewater 16.4.1 Anaerobic Treatment 16.4.1.1 UASB Reactors (Upflow Anaerobic Sludge Blanket) 16.4.1.2 Anaerobic Fixed Film Reactor (AFFR) 16.4.1.3 Fixed-Film Anaerobic Reactor (AFFR) 16.4.2 Aerobic Treatment 16.4.3 Hybrid Anaerobic/Aerobic Systems 16.4.4 Fungal Treatment 16.4.5 Treatment Through Bacteria 16.4.6 Phytoremediation 16.4.7 Membrane Bioreactor (MBR) 16.5 Sustainable Development of Microbial Pharmaceutical Wastewater Treatment: Challenges and Scope 16.5.1 Processes of Waste Recovery 16.6 Recommendations and Future Prospects 16.7 Conclusion References 17. Biotechnological Approaches for Microbial Treatment of Textile Wastewater and Resource Recovery: Opportunities, Challenges, and Future Perspectives 17.1 Introduction 17.2 Textile Wastewater Treatment Technology 17.2.1 Physico-Chemical Treatment Methods 17.2.2 Biological Treatment Methods 17.2.3 Enzymatic Treatment 17.3 Hybrid Biotechnological Approaches for Textile Wastewater Treatment 17.3.1 Microbial Fuel Cell (MFC) Technology 17.3.2 Membrane Bioreactor 17.4 Nanobiotechnogy 17.5 Conclusions References 18. Strategic Re-Use and Recycling of Grey Water Through Treatment Systems for Resource Recovery 18.1 Introduction 18.2 Sources of Grey Water 18.3 Composition and Characteristics of Grey Water 18.4 Physical, Chemical and Biological Characteristics of Grey Water 18.5 Parameters Affecting Characteristics of Grey Water 18.6 Treatment of Grey Water 18.6.1 Primary Treatment 18.6.2 Secondary Treatment 18.6.3 Tertiary Treatment 18.6.3.1 Treatment Systems 18.8 Re-Use of Grey Water 18.9 Conclusion References 19. A Sustainable Approach of Biodiesel Production and Water Treatment Using Oleaginous Microorganisms 19.1 Oleaginous Organisms for Biodiesel Production 19.1.1 Genetic Modifications for the Production of Biodiesel 19.2 Type of Oleaginous Microorganisms for Wastewater Treatment 19.2.1 Oleaginous Yeast 19.2.2 Oleaginous Microalgae 19.2.3 Oleaginous Bacteria and Fungi 19.3 Treatment of Wastewaters by Oleaginous Microorganisms 19.3.1 Treatment of Municipal Wastewater (Sludge) 19.3.2 Treatment of Food Industry Wastewater 19.3.3 Treatment of Fermentation Wastewater 19.4 Use of Lignocellulosic Biomass by Oleaginous Microorganisms 19.5 Reducing Sugars as a Source for Fatty Acid Production 19.6 Oleaginous Organisms and Some Genetic Modifications 19.7 Conclusions References 20. Biological Treatment and Value-Added Products Recovery from Wastewaters Discharged from Food Processing Industries: A Review 20.1 Introduction 20.2 Characteristics and Treatment of Food Processing Wastewater 20.3 Meat Processing Wastewater 20.3.1 Microbial Treatment 20.3.2 Composition of Meat Wastewater 20.3.2.1 Primary Treatment 20.3.2.2 Secondary Technique 20.3.3 Role of Microbes in Remediation 20.4 Beverage Wastewater Processing 20.4.1 Microbial Treatment 20.4.1.1 Anaerobic Wastewater Treatment 20.4.1.2 Anaerobic Digestion Treatment of Wastewater 20.4.1.3 Aerobic Wastewater Treatment 20.4.2 Beverage Wastewater Composition 20.4.3 Role of Microbes in Remediation 20.4.3.1 Bacteria 20.4.3.2 Protozoa 20.4.3.3 Fungi 20.4.3.4 Algae 20.4.4 Perspective in Nutrient Recovery from Beverage Wastewater 20.5 Dairy Processing Wastewater 20.5.1 Microbial Treatment 20.5.2 Composition of Dairy Wastewater 20.5.1 Role of Microbes in Remediation 20.5.1.1 Perspectives in Nutrient Recovery from Dairy Wastewater 20.6 High Value Products from Microbes Grown on Wastewater 20.6.1 Bio-Hydrogen 20.6.2 Bioplastic 20.6.3 Exopolysaccharides 20.6.4 Bio-Fertilizer 20.6.5 Biodiesel 20.7 Recovery of Value-Added Bioactive Compounds from Microbial Treatment Food Processing Wastewater 20.8 Conclusion References 21. Integrated Wastewater Treatment and Biofuel Production Using Microalgae 21.1 Introduction 21.2 Application of Microalgae for Wastewater Treatment 21.2.1 Municipal Wastewater 21.2.2 Agricultural Wastewater 21.2.3 Industrial Wastewater 21.3 Use of Algal Biomass for Biofuels 21.3.1 Transesterification 21.4 Anaerobic Digestion 21.4.1 Fermentation 21.4.2 Torrefaction 21.4.3 Pyrolysis 21.4.5 Hydrothermal Processing 21.4.5 Gasification 21.5 Economic Prospective 21.5.1 Life Cycle Assessment 21.5.2 Techno-Economic Analysis 21.6 Policies and Incentives for Algal Biofuel 21.7 Conclusions References Index