ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Microbial Polymers: Applications and Ecological Perspectives

دانلود کتاب پلیمرهای میکروبی: کاربردها و دیدگاه های اکولوژیکی

Microbial Polymers: Applications and Ecological Perspectives

مشخصات کتاب

Microbial Polymers: Applications and Ecological Perspectives

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9811600449, 9789811600449 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 721
[703] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Microbial Polymers: Applications and Ecological Perspectives به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پلیمرهای میکروبی: کاربردها و دیدگاه های اکولوژیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پلیمرهای میکروبی: کاربردها و دیدگاه های اکولوژیکی



این کتاب انواع پلیمرهای مبتنی بر میکروب و کاربرد آنها در بخش‌های مختلف را با تأکید ویژه بر کشاورزی پوشش می‌دهد. این آخرین تحقیقات، روش‌ها، نظرات، دیدگاه‌ها و بررسی کالبد شکافی منشأ میکروبی پلیمرها، تولید، طراحی و فرآوری آنها در سطح صنعتی و همچنین پیشرفت‌ها برای کاربردهای صنعتی خاص را گردآوری می‌کند. کتاب همچنین پیشرفت‌های اخیر در تولید پلیمرهای زیستی و اصلاح آنها برای تقویت ارزش را مورد بحث قرار می‌دهد. علاوه بر این، درک فیزیولوژی میکروبی و شرایط بهینه برای تولید پلیمر نیز توضیح داده شده است.

این مجموعه از فصول علمی در مورد اصول و عملکرد پلیمرهای میکروبی، انتقال دانش را در بین جوامع علمی، صنایع و میکروبیولوژیست ها تقویت می کند و در خدمت دانشجویان، دانشگاهیان، محققان برای درک بهتر ماهیت پلیمرهای میکروبی و کاربرد آن است. روشی برای اکوسیستم پایدار


توضیحاتی درمورد کتاب به خارجی

This book cover all types of microbe based polymers and their application in diverse sectors with special emphasis on agriculture. It collates latest research, methods, opinion, perspectives, and reviews dissecting the microbial origins of polymers, their production, design, and processing at industrial level, as well as improvements for specific industrial applications.  Book also discusses recent advances in biopolymer production and their modification for amplifying the value. In addition, understanding of the microbial physiology and optimal conditions for polymer production are also explained.  

This compilation of scientific chapters on principles and practices of microbial polymers fosters the knowledge transfer among scientific communities, industries, and microbiologist and serves students, academicians, researchers for a better understanding of the nature of microbial polymers and application procedure for sustainable ecosystem



فهرست مطالب

Preface
Contents
About the Editors
Part I: Diversity of Microbial Polymers
	1: The Production and Applications of Microbial-Derived Polyhydroxybutyrates
		1.1 Introduction
		1.2 A Brief History of Polyhydroxybutyrates (PHBs)
		1.3 Mechanism for the Biosynthesis of PHB in Microorganisms
		1.4 Production of PHB
		1.5 Factors Affecting the PHB Accumulation in Bacteria
			1.5.1 Effect of the Bacteria Strain
			1.5.2 Effect of the Carbon Source Materials
			1.5.3 Effect of the Fermentation Process
			1.5.4 Effect of Culture Conditions
		1.6 Extraction of PHB
		1.7 Applications of PHB
		1.8 Conclusion
		References
	2: Fungal Exopolysaccharides: Types, Production and Application
		2.1 Introduction
		2.2 Sources of Fungal Exopolysaccharides
			2.2.1 Chitin/Chitosan
			2.2.2 Scleroglucan
			2.2.3 Schizophyllan
			2.2.4 Botryosphaeran
			2.2.5 Glucuronoxylomannan
			2.2.6 Pullulan
		2.3 Production Process of Polysaccharides from Fungi
			2.3.1 Solid-State Fermentation (SSF)
			2.3.2 Submersed Fermentation
		2.4 Compositions of EPS Produced by Different Fungi
		2.5 Parameters Affecting Polysaccharides Production
			2.5.1 Nutrient Source
				2.5.1.1 Nitrogen Source
				2.5.1.2 Carbon Source
			2.5.2 pH
			2.5.3 Temperature
			2.5.4 Size and Age of Fungal Inoculum
			2.5.5 Fungal Material Preservation
				2.5.5.1 Short-Term Preservation
				2.5.5.2 Long-Term Preservation
			2.5.6 Additives
		2.6 Different Applications of Fungal Polysaccharides
		2.7 Conclusion
		References
	3: Isolation and Purification of Microbial Exopolysaccharides and Their Industrial Application
		3.1 Introduction
		3.2 Various Exopolysaccharides
			3.2.1 Xanthan
				3.2.1.1 Pharmaceutical Applications
				3.2.1.2 Personal Hygiene Products
				3.2.1.3 Oil Industry
				3.2.1.4 Food Processing Industries
				3.2.1.5 Other Applications
			3.2.2 Gellan
				3.2.2.1 Pharmaceutical Applications
				3.2.2.2 Tissue Engineering
				3.2.2.3 Food Industry
			3.2.3 Pullan
				3.2.3.1 Food Processing Industries
			3.2.4 Dextran
			3.2.5 Curdlan
				3.2.5.1 Food Processing Industry
				3.2.5.2 Biomedical Applications
			3.2.6 Levan
				3.2.6.1 Tissue Engineering
				3.2.6.2 Biotechnological Applications
				3.2.6.3 Other Applications
			3.2.7 Welan
				3.2.7.1 Cement Industries
				3.2.7.2 Other Applications
			3.2.8 Kefiran
				3.2.8.1 Food Industry
				3.2.8.2 Medical Applications
			3.2.9 Hyaluronan
				3.2.9.1 Medical Applications
			3.2.10 Alternan
			3.2.11 Cellulose
				3.2.11.1 Food Industry
		3.3 Isolation and Purification Techniques
			3.3.1 Ultracentrifugation Method
			3.3.2 Ultrafiltration Method
			3.3.3 Salting Out Method
			3.3.4 Anion Exchange Column Chromatography
			3.3.5 Affinity Chromatography
		3.4 Industrial Applications of Exopolysaccharides
		3.5 Conclusion
		References
	4: A Review on Properties and Applications of Xanthan Gum
		4.1 Introduction
			4.1.1 History
			4.1.2 Properties
		4.2 Microbial Production of Xanthan Gum
			4.2.1 Organism and Inoculum Preparation
			4.2.2 Media Preparation
			4.2.3 Fermentation
		4.3 Factors Affecting Xanthan Gum Production
			4.3.1 Effect of pH
			4.3.2 Effect of Temperature
			4.3.3 Effect of Pressure
			4.3.4 Effect of Carbon Sources
			4.3.5 Effect of Polymer Concentration and Salts
			4.3.6 Effect of Viscosity on Xanthan Gum in the Presence of Galactomannan
		4.4 Applications of Xanthan Gum
			4.4.1 Pharmaceutical Applications
			4.4.2 Food Industries
			4.4.3 Dairy
			4.4.4 Bakery Products
			4.4.5 Beverages
			4.4.6 Biomedical Application
			4.4.7 Nanoparticle
			4.4.8 Drug Delivery
			4.4.9 Food Applications
			4.4.10 Cosmetics
			4.4.11 Oil Industry
		4.5 Conclusion and Future Prospective
		References
	5: Biosynthesis and Characterization of Poly-(3)-hydroxyalkanoic Acid by Bacillus megaterium SF4 Using Different Carbohydrates
		5.1 Introduction
			5.1.1 Plastics
			5.1.2 Poly-(3)-hydroxyalkanoic Acid: Discovery, Structure, and Classification
			5.1.3 Biosynthesis of Poly-(3)-hydroxyalkanoic Acid
		5.2 Materials and Methods
			5.2.1 Detection of PHA Production by Isolate SF4
			5.2.2 Characterization of Isolate SF4
			5.2.3 Assessment of Poly-(3)-hydroxyalkanoic Acid Production
			5.2.4 Extraction of PHA
			5.2.5 Characterization of PHA
			5.2.6 Amplification of PHA Synthases C and R Genes in Isolate SF4
		5.3 Results and Discussion
			5.3.1 Detection of PHA Production by Isolate SF4
			5.3.2 Colonial, Morphological, Biochemical, and Molecular Characterization of Isolate SF4
			5.3.3 Growth Dynamics of Isolate SF4 in Four Different Carbohydrates
			5.3.4 Assessment of Dry Cell Weight and PHA Production in Four Different Carbohydrates
			5.3.5 FT-IR Spectra Analysis of Extracted PHA
			5.3.6 GC-MS Analysis of Extracted PHA
			5.3.7 Characterization of PHA Synthase Genes
		5.4 Conclusion
		References
	6: Mushroom Mycelia-Based Material: An Environmental Friendly Alternative to Synthetic Packaging
		6.1 Introduction
			6.1.1 Demand of Ecological Modernization in the Packaging Industry
			6.1.2 Background of Bio-composite Based on Mycelium
				6.1.2.1 Mycelium-Based Bio-composite?
		6.2 Early Uses of Mushroom Packaging
		6.3 Potential of Mycelium-Based Material as an Alternative to Synthetic Packaging Materials
		6.4 Production of Mycelium-Based Material for Packaging
		6.5 Mycelium Production and its Environmental Impact
		6.6 Application of Mushroom Bio-composites
		6.7 Conclusion
		References
	7: An Overview of Microbial Derived Polyhydroxybutyrate (PHB): Production and Characterization
		7.1 Introduction
			7.1.1 Plastics and Problems with Plastics
			7.1.2 Biodegradable Polymers
			7.1.3 Biodegradable Plastics
		7.2 Polyhydroxyalkanoates
			7.2.1 Classes of Polyhydroxyalkanoates
		7.3 Poly-beta-hydroxybutyrate (PHB)
		7.4 PHB- producing Bacteria
		7.5 Importance of PHB to Bacteria
		7.6 Physical and Chemical Properties of PHB
		7.7 Genes Involved in PHB Biosynthesis
		7.8 Biodegradation of PHB
		7.9 Identification of PHA by Staining Techniques
		7.10 PHB Extraction and Recovery
		7.11 Growth Parameters to Increase PHB Production
		7.12 Factors Affecting PHB Production
			7.12.1 Microorganisms
			7.12.2 Medium
			7.12.3 Fermentation
			7.12.4 Recovery
		7.13 PHB Quantification and Characterization
		7.14 Mutagenesis
		7.15 Future of PHB
		7.16 Conclusion
		References
	8: Insight of Biopolymers and Applications of Polyhydroxyalkanoates
		8.1 Introduction
		8.2 Classification of Biopolymers
		8.3 Poly(beta-, gamma-, delta-hydroxyalkanoates)
		8.4 Applications
			8.4.1 PHA Application
			8.4.2 PHA as Packaging Materials
			8.4.3 PHA as Biofuels
			8.4.4 Biomedical Applicability of PHAs
				8.4.4.1 Tissue Engineering
				8.4.4.2 Hard Tissue
					Bone
					Cartilage
				8.4.4.3 Soft Tissue
					Cardiac Tissue Engineering
					Wound Healing
				8.4.4.4 PHAs for Organ Tissues
				8.4.4.5 PHA for Drug Delivery Systems
		8.5 Conclusion
		References
	9: Microbial Pigments and Their Application
		9.1 Introduction
		9.2 Source and Production of Microbial Pigment
			9.2.1 Agri-Industrial Waste
			9.2.2 Marine Source
			9.2.3 Soil
		9.3 Application of Microbial Pigments in Various Industries
		9.4 Role of Microbial Pigments in Food Industry
			9.4.1 Microbial Pigments as Food Color
			9.4.2 Biopigments as Food Additive with its Antioxidant Property
			9.4.3 Application in Cosmetic and Pharmaceutical Industry
			9.4.4 Application in the Textile Industry
		9.5 Conclusion
		References
Part II: Microbial Polymers in Agriculture
	10: Extracellular Polymeric Substances from Agriculturally Important Microorganisms
		10.1 Introduction
		10.2 Plant Growth-Promoting Bacteria
		10.3 Extracellular Polymeric Substances
		10.4 Agricultural Important Roles of EPS
			10.4.1 Symbiosis
			10.4.2 EPS as Pathogenicity/Virulence Factors
			10.4.3 Drought Stress
			10.4.4 Heat Stress
			10.4.5 Salt Stress
			10.4.6 EPS and Soil Structure
		10.5 Inoculation of EPS Producers in Crops
			10.5.1 EPS Application in Agriculture
		10.6 Conclusions and Perspectives
		References
	11: Significance of Bacterial Polyhydroxyalkanoates in Rhizosphere
		11.1 Introduction
		11.2 Origin of Rhizosphere
		11.3 Sources of Bacterial PHA
			11.3.1 Biosynthesis of PHA
			11.3.2 Reduction of 3-Ketothiolase by PhaB
			11.3.3 PHA Polymerization of PhaC
		11.4 Properties of PHA
		11.5 Types of PHA
		11.6 Ecological Niche of Bacterial PHA Production
			11.6.1 Hydrocarbons
			11.6.2 Halophiles
			11.6.3 Photosynthetic Bacteria
			11.6.4 Antibiotic Factors
		11.7 Bacterial PHA in Rhizosphere
			11.7.1 Screening of PHA from Bacterial Sources
			11.7.2 Characterization and Identification of PHA from Bacterial Sources
			11.7.3 PHA Production from Bacterial Sources
		11.8 Factors Affecting PHA Production
		11.9 Applications of PHA
		11.10 Future Prospects and Challenges
		References
	12: Role of Microbial Biofilms in Agriculture: Perspectives on Plant and Soil Health
		12.1 Introduction
		12.2 Biofilm-Producing Microbes Categorically with Special Emphasis on Agriculturally Important Microbes (AIMs)
		12.3 Roles of Microbial Biofilm in Crop Protection
			12.3.1 Disease and Pest Resistance
			12.3.2 Protection from Abiotic Stress
		12.4 Role in Soil Health
		12.5 Impact on Plant Growth
		12.6 Factors Affecting Biofilm Formation
			12.6.1 pH
			12.6.2 Temperature and Light Intensity
			12.6.3 Oxygen
			12.6.4 EPS
		12.7 Biosafety Concern, Regulatory Mechanisms, and Use-Associated Issues
		12.8 Keyword Mining
		12.9 Conclusion
		References
	13: Biological Soil Crusts to Keep Soil Alive, Rehabilitate Degraded Soil, and Develop Soil Habitats
		13.1 Introduction
		13.2 Cyanobacteria and Green Algae
		13.3 Mosses
		13.4 Lichens
		13.5 Ecological Roles of Biocrusts
			13.5.1 The Role of Soil Microorganisms in Inhibiting Runoff
			13.5.2 Hydrology and Available Soil Water
			13.5.3 Application of EPS on Improving Soil Properties
			13.5.4 Biocrust and Soil Nutrition
			13.5.5 Soil Texture and Aggregate Stability
		13.6 Sustainable Agriculture
			13.6.1 Wastewater Treatment
			13.6.2 Seed Germination and Establishment of Vegetation
			13.6.3 Biofertilizer
			13.6.4 Biocrusts Functions and Utility in Restoration
		13.7 Conclusion
		References
	14: Fungal Chitosan: The Importance and Beneficiation of this Biopolymer in Industrial and Agricultural Process
		14.1 Introduction
		14.2 Physiological Function of Fungal Chitin and Chitosan
			14.2.1 Biosynthesis of Chitin and Chitosan Biopolymers
			14.2.2 Fungi Used for the Isolation of Chitin and Chitosan
			14.2.3 Factors Distressing Fungal Chitin and Chitosan Conversion
		14.3 Application of Chitosan in Food Industries
			14.3.1 Effect of Chitosan in Bread
			14.3.2 Effect of Chitosan in Fruits and Vegetables
			14.3.3 Effect of Chitosan in Kimchi
			14.3.4 Effect of Chitosan in Meat
			14.3.5 Effect of Chitosan Added with Seafood and Seafood Products
		14.4 Applications of Chitosan in Pharmaceutical and Biomedical Field
			14.4.1 Oral Sources of Dosage
			14.4.2 Dressing of Wounds
			14.4.3 Muco-Adhesive Oral
			14.4.4 Adhesive for Water Resistance
		14.5 Carriers for Drugs
			14.5.1 Microparticles/Nanoparticles
			14.5.2 Conjugates
			14.5.3 Antitumor Activity
			14.5.4 Enhancers for Intestinal Absorption
			14.5.5 Tissue Engineering
			14.5.6 Dentistry
			14.5.7 Veterinary Medicine
			14.5.8 Cosmetics
			14.5.9 Antimicrobial Agent
			14.5.10 Anticholesterolaemic Effect
			14.5.11 Antioxidative Activity
		14.6 Applications of Chitosan in Agriculture
			14.6.1 Chitosan in Managing Plant Diseases
			14.6.2 Chitin and Chitosan and Their Derivative Compounds Used for Chlorophyll Enhancement
			14.6.3 Stimulating Seed Germination
			14.6.4 Improve Mineral Nutrient Uptake of Plants
			14.6.5 Chitosan as Soil Amendment
			14.6.6 Methods of Application of Chitin, Chitosan, and the Derivatives for Agriculture
		14.7 Conclusion
		References
	15: Role of Microbial Extracellular Polymeric Substances in Soil Fertility
		15.1 Introduction
		15.2 Ecological Characteristics
		15.3 Impact of Extracellular Polymeric Substances on Soil Aggregation
			15.3.1 Role of Microbial Population on Soil Aggregation
			15.3.2 Inoculation of Extracellular Polymeric Substance Producers in Soils
			15.3.3 Inoculation of Extracellular Polymeric Substance Producers in Plants
			15.3.4 Inoculation of Pure Extracellular Polymeric Substance into Soil
		15.4 Conclusion
		References
	16: Microbes Derived Exopolysaccharides Play Role in Salt Stress Alleviation in Plants
		16.1 Introduction
		16.2 Salinity and Crop Production
		16.3 EPS and Biofilm Producing Microorganism
		16.4 Chemical Structure of EPS
		16.5 Biosynthesis of EPS
		16.6 Inoculation of EPS Producers in Soil and Plant
			16.6.1 Inoculation in Soil
			16.6.2 Inoculation in Plant
		16.7 Amelioration of Salt Stress by Microbes
		16.8 Conclusion
		16.9 Future Prospectus
		References
Part III: Microbial Polymers in Industrial Sectors
	17: Microbial Exopolysaccharides: Structure and Therapeutic Properties
		17.1 Introduction
		17.2 LAB Polysaccharides
		17.3 EPSs from Marine Microbial Sources
		17.4 Extremophilic Microbes as Exopolysaccharide Producers
		17.5 Endophytic Fungi as EPS Producers
		17.6 Some Recent Investigation on Structure and Function of EPS
		17.7 Micro Algal EPS and Their Bioactivities
		17.8 Medicinal/Therapeutic Applications of Exopolysaccharides
		17.9 Conclusion
		References
	18: Microbial Biopolymers: Pharmaceutical, Medical, and Biotechnological Applications
		18.1 Introduction to Biopolymers
		18.2 Classification of Biopolymers
		18.3 Microbial Production of Biopolymers
		18.4 Microbial Biopolymers and Their Biomedical Applications
			18.4.1 Polyhydroxyalkanoates (PHAs)
			18.4.2 Polylactic Acid (PLA)
			18.4.3 Bacterial Cellulose (BC)
			18.4.4 Kefiran
			18.4.5 Levan
			18.4.6 Dextran
			18.4.7 Pullulan
			18.4.8 Alginates (ALGs)
			18.4.9 Hyaluronic Acid (HA)/Hyaluronate
			18.4.10 Poly-γ-Glutamic Acid (γ-PGA)
			18.4.11 Polyphosphates (PolyPs)
			18.4.12 Chitin and Chitosan
		References
	19: Mycobacterium Biofilms Synthesis, Ultrastructure, and Their Perspectives in Drug Tolerance, Environment, and Medicine
		19.1 Introduction
		19.2 History of Mycobacterial Biofilms
		19.3 Characteristics of Mycobacterial Biofilm
		19.4 Ultrastructure of Biofilm
		19.5 Resistance to Antibiotics
		19.6 Mycobacterial Biofilms in the Environment
		19.7 Mycobacterial Biofilms in Medicine: Clinical Implications
			19.7.1 Nontuberculous Mycobacterial Disease
			19.7.2 Mycobacterium Tuberculosis Disease
		19.8 Infection Associated with Biofilm
		19.9 Biofilm Formation by Mycobacterium smegmatis
		19.10 Biofilm in Nontuberculosis Mycobacteria (NTM)
			19.10.1 Mycobacterium avium
			19.10.2 Mycobacterium abscessus
			19.10.3 Mycobacterium fortuitum and Mycobacterium chelonae
			19.10.4 Mycobacterium ulcerans
			19.10.5 Mycobacterium marinum
		19.11 Conclusion and Future Prospective
		References
	20: A Comprehensive Review on Different Microbial-Derived Pigments and Their Multipurpose Activities
		20.1 Pigments, an Introduction
		20.2 Microbial Pigments
			20.2.1 Bacterial Pigments
				20.2.1.1 Pyocyanin
				20.2.1.2 Astaxanthin
				20.2.1.3 Staphyloxanthin
				20.2.1.4 Violacein
				20.2.1.5 Prodigiosin
			20.2.2 Fungal Pigments
				20.2.2.1 Riboflavin
				20.2.2.2 β-Carotene
				20.2.2.3 Naphtoquinone
				20.2.2.4 Lycopene
				20.2.2.5 Benzoquinone
			20.2.3 Algal Pigments
				20.2.3.1 Chlorophyll
				20.2.3.2 Fucoxanthin
				20.2.3.3 Lutein
				20.2.3.4 Phycocyanin
				20.2.3.5 Phycoerythrin
		20.3 Production of Microbial Pigments
		20.4 Applications of Microbial Pigments
			20.4.1 Textile Industry
			20.4.2 Food Industry
			20.4.3 Cosmetic Industry
			20.4.4 Pharmaceuticals and Medicine
				20.4.4.1 Antimicrobial Activity
				20.4.4.2 Antioxidant Activity
				20.4.4.3 Anticancer Agents
				20.4.4.4 Immunosuppressive Activity
				20.4.4.5 Antidiabetic Activity
				20.4.4.6 Anti-adipogenic Activity
				20.4.4.7 Anti-atherosclerosis Activity
				20.4.4.8 Anti-inflammatory Activity
				20.4.4.9 Antimalarial Activity
				20.4.4.10 Anti-tuberculosis Activity
				20.4.4.11 Anti-HIV Activity
				20.4.4.12 Anti-Alzheimeric Activity
				20.4.4.13 Anti-hypertensive Activity
				20.4.4.14 Antiulcerogenic Activity
		20.5 Other Applications
			20.5.1 Cytotoxic Activity
			20.5.2 Antifouling Activity
			20.5.3 Algicidal Activity
			20.5.4 Insecticidal Activity
			20.5.5 Herbicidal Activity
			20.5.6 Antiparasitic Activity
			20.5.7 Antiprotozoal Activity
			20.5.8 Antileishmanial Activity
			20.5.9 Antinematodal Activity
			20.5.10 Fluorescent Probes
		20.6 The Road Ahead and Challenges
		20.7 Conclusion
		References
			Websites
	21: Microbial Polysaccharides with Potential Industrial Applications: Diversity, Synthesis, and Their Applications
		21.1 Microbial Polysaccharides
		21.2 General Polysaccharide Structure and Physical Properties
		21.3 Common Metabolic Precursors
		21.4 Common Analytical Techniques
		21.5 Commercial Microbial Polysaccharide and Its Commercial Applications
			21.5.1 Alginate
			21.5.2 Dextrans
			21.5.3 Gellan
			21.5.4 Welan
			21.5.5 Pullulan
			21.5.6 Scleroglucan
			21.5.7 Curdlan
			21.5.8 Xanthan Gum
		21.6 EPS Production Using Low-Cost Biomass Resource
			21.6.1 Cost-Effective Biomass Resources
				21.6.1.1 Syrups and Molasses
				21.6.1.2 Sugarbeet Pulp (SBP)
				21.6.1.3 Olive Mill Wastewater (OMW)
				21.6.1.4 Cheese Whey
				21.6.1.5 Pomace
				21.6.1.6 Lignocellulosic Biomass
		21.7 Biosynthesis Pathways of Microbial Polysaccharides
			21.7.1 General Maneuvering for the Engineering of Bacterial Polysaccharides
				21.7.1.1 Production of Exopolysaccharide via Wzx/Wzy-Dependent Pathway
				21.7.1.2 The ABC Transporter Pathway
				21.7.1.3 Productions of Exopolysaccharide via Synthase-Dependent Pathways
				21.7.1.4 Extracellular Synthesized Polysaccharides
			21.7.2 Bioengineering Strategies Towards Tailor-Made Exopolysaccharide
		21.8 Conclusion
		References
	22: Eco-friendly Microbial Biopolymers: Recent Development, Biodegradation, and Applications
		22.1 Introduction
		22.2 Types of Biopolymers
			22.2.1 Pullulan
			22.2.2 Poly-β-Hydroxybutyrate
			22.2.3 Cellulose and Its Derivatives
			22.2.4 Chitin and Pectin
			22.2.5 Bacterial Biopolymers
			22.2.6 Polysaccharides
			22.2.7 Exopolysaccharides
			22.2.8 Capsular Polysaccharides
			22.2.9 Polyamides and Polyesters
			22.2.10 Polyanhydrides
		22.3 Biosynthesis of Microbial Biopolymers
		22.4 Types of Antimicrobial Groups Incorporated in Polymers
		22.5 Halogen Containing Polymers
		22.6 Factors Affecting the Production and Purification of Biopolymers
		22.7 The Pathway Involved in Microbial Polymer
		22.8 Application of Biopolymers
			22.8.1 Biopolymers for Water Retention
			22.8.2 Biopolymers for Soil Adhesion
			22.8.3 Role of Biopolymers for Nutrient Accumulation and Vegetative Growth
			22.8.4 Biopolymers for Heavy Metal Sorption
			22.8.5 Role of Biopolymers in Soil Stability and Soil Structure
			22.8.6 Biomedical Applications
			22.8.7 Food Industry
		22.9 Biodegradation of Microbial Polymers
		22.10 Concluding Remarks
		References
Part IV: Advances in Microbial Polymers
	23: Microbial Biopolymers as an Alternative Construction Binder
		23.1 Introduction
			23.1.1 Alternative Binders
			23.1.2 Waste Reusage
			23.1.3 Biological Approaches
				23.1.3.1 Microbial Induced Calcite Precipitation
				23.1.3.2 Biopolymers
		23.2 Common Biopolymers Used in Civil and Construction Engineering Practices
			23.2.1 Xanthan Gum
			23.2.2 Gellan Gum
			23.2.3 Starch
			23.2.4 Beta-Glucan
			23.2.5 Guar Gum
			23.2.6 Casein
		23.3 Geotechnical Engineering Behaviors of BPST
			23.3.1 Microscopic Interaction Between Biopolymers and Soil Particles
				23.3.1.1 Biopolymers: Coarse Particles
				23.3.1.2 Biopolymers: Clay Particles
			23.3.2 Soil Consistency and Electrical Sensitivity
			23.3.3 Strengthening Parameters
				23.3.3.1 Unconfined Compressive Strength (UCS)
				23.3.3.2 Interparticle Cohesion
				23.3.3.3 Dilatancy and Interparticle Friction Angle
			23.3.4 Hydraulic Conductivity
			23.3.5 Erosion Behavior
			23.3.6 Durability
			23.3.7 Vegetation Growth
		23.4 BPST Implementation in Geotechnical Engineering Practices
			23.4.1 Implementation Methods
				23.4.1.1 Spraying: Wet and Dry
					Wet Spraying
					Dry Spraying
				23.4.1.2 Injection: Grouting
				23.4.1.3 In Situ Soil Mixing and Compaction
			23.4.2 Erosion Control
			23.4.3 Grouting Control and Injection
			23.4.4 Vegetation Promotion and Degraded Site Recovery
		23.5 Future Prospects of BPST
			23.5.1 Economic Feasibility
			23.5.2 Limitations and Challenges
		23.6 Conclusion
		References
	24: Genetic Engineering Approaches for High-End Application of Biopolymers: Advances and Future Prospects
		24.1 Introduction
		24.2 Advancement in Genetically Engineered Biopolymers
			24.2.1 Second-Generation Biopolymers
			24.2.2 Genetically Engineered Proteins for Tissue Engineering
			24.2.3 Genetically Engineered Elastin-Based Biopolymers
			24.2.4 Genetically Engineered Human Osteoblasts Biopolymers
			24.2.5 ``Bacterial Builders´´ Produce Functional Biopolymers
		24.3 Approaches for the Production of Microbial Polymers
		24.4 Discussion and Conclusion
		24.5 Future Prospects
		References
	25: Microbial Pigments: Secondary Metabolites with Multifaceted Roles
		25.1 Introduction
			25.1.1 Brief History of Pigments
			25.1.2 Why Natural Pigments over Synthetic Pigments?
		25.2 Ecology of Pigmented Microorganisms
		25.3 Sources of Pigments
			25.3.1 Bacteria
			25.3.2 Fungi
			25.3.3 Yeast
			25.3.4 Algae
		25.4 Types of Pigments
			25.4.1 Carotenoids
				25.4.1.1 Astaxanthin
				25.4.1.2 beta-Carotene
				25.4.1.3 Canthaxanthin
			25.4.2 Melanin
			25.4.3 Prodigiosin
			25.4.4 Phycocyanin
			25.4.5 Riboflavin
			25.4.6 Violacein
		25.5 Applications of Microbial Pigments
			25.5.1 Biological Significance
			25.5.2 Microbial Pigments in Pharmacological Industries
				25.5.2.1 Anticancer Potential of Bacterial Pigments
				25.5.2.2 Antioxidant and Anti-hypersensitivity Activities
				25.5.2.3 Antimicrobial Activities
				25.5.2.4 Antifungal Activity
				25.5.2.5 Immunosuppressive Activity
				25.5.2.6 Anti-HIV and Anti-Alzheimer Activity
				25.5.2.7 Anti-lipoperoxidant and Antiulcerogenic Activities
				25.5.2.8 Anti-obesity, Anti-adipogenic, and Antidiabetic Activities
				25.5.2.9 Herbicidal, Insecticidal, and Algicidal Activities
				25.5.2.10 Antiviral, Antimalarial, and Antituberculosis Activities
				25.5.2.11 Antiprotozoal and Antiparasitic Activities
				25.5.2.12 Antileishmanial and Antitrypanosomal Activities
			25.5.3 Microbial Pigments in Food Industries
			25.5.4 Microbial Pigments in the Textile Industries
		25.6 Conclusion and Future Prospectives
		References
	26: Bio-fermentative Production of Xanthan Gum Biopolymer and Its Application in Petroleum Sector
		26.1 Introduction
		26.2 Structure and Properties of Xanthan Gum
		26.3 Bio-fermentative Production of Xanthan Gum
			26.3.1 Factors Affecting the Xanthan Gum Production
		26.4 Downstream Separation of Xanthan Gum
		26.5 Commercial Application of Xanthan Gum
		26.6 Application of Xanthan Gum in Petroleum Industries
		26.7 Recent Developments and Future Scenarios
		26.8 Conclusion
		References
	27: A Comparative Study on Biodegradable Packaging Materials: Current Status and Future Prospects
		27.1 Introduction
		27.2 Synthetic Packaging Materials
			27.2.1 Hazards of Synthetic Packaging Materials
				27.2.1.1 Unsustainability
				27.2.1.2 Disposal
				27.2.1.3 Environmental Pollution
		27.3 Sustainable Packaging Material
			27.3.1 Bioplastics
				27.3.1.1 Polylactic Acid Polymer
				27.3.1.2 Polyhydroxyalkanoates
				27.3.1.3 Starch
				27.3.1.4 Cellulose
				27.3.1.5 Chitin/Chitosan-Based Films
		27.4 Mushrooms
			27.4.1 Morphology of Fungal Mycelium
			27.4.2 Mushroom-Based Packaging Materials
				27.4.2.1 Raw Materials
				27.4.2.2 Production Protocol
				27.4.2.3 Mushroom-Based Foams
				27.4.2.4 Properties of MBFs
				27.4.2.5 What Makes MBFs Advantageous?
				27.4.2.6 Multi-Facetted Applications of Mycelium-Based Foams
		27.5 Future
		27.6 Conclusion
		References
	28: Environmental Implications of Microbial Bioplastics for a Sustainable Future
		28.1 Introduction
		28.2 Microbial Bioplastics
		28.3 Different Types of Bioplastics
			28.3.1 Starch-Based Bioplastics
				28.3.1.1 Biopolymers from Gases
			28.3.2 Microbial Bioplastics
				28.3.2.1 Polyhydroxyalkanoates
		28.4 Synthesis and Degradation of Microbial Bioplastics
		28.5 Parameters Affecting Bioplastic Production
		28.6 Biodegradation of Bioplastics in Different Natural Environments
		28.7 Challenges and Environmental Impacts of Microbial Bioplastics
		28.8 Future Prospects and Possibilities
		28.9 Conclusions
		References




نظرات کاربران