ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Metallogenic Theory and Exploration Technology of Multi-Arc-Basin-Terrane Collision Orogeny in “Sanjiang” Region, Southwest China (The China Geological Survey Series)

دانلود کتاب نظریه متالوژنیک و فناوری اکتشاف کوهزایی برخورد چند قوس حوضه زمین در منطقه "سانجیانگ"، جنوب غربی چین (سری بررسی زمین شناسی چین)

Metallogenic Theory and Exploration Technology of Multi-Arc-Basin-Terrane Collision Orogeny in “Sanjiang” Region, Southwest China (The China Geological Survey Series)

مشخصات کتاب

Metallogenic Theory and Exploration Technology of Multi-Arc-Basin-Terrane Collision Orogeny in “Sanjiang” Region, Southwest China (The China Geological Survey Series)

ویرایش: [1st ed. 2023] 
نویسندگان: , , , , ,   
سری:  
ISBN (شابک) : 9819936519, 9789819936519 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 322
[321] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Metallogenic Theory and Exploration Technology of Multi-Arc-Basin-Terrane Collision Orogeny in “Sanjiang” Region, Southwest China (The China Geological Survey Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه متالوژنیک و فناوری اکتشاف کوهزایی برخورد چند قوس حوضه زمین در منطقه "سانجیانگ"، جنوب غربی چین (سری بررسی زمین شناسی چین) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه متالوژنیک و فناوری اکتشاف کوهزایی برخورد چند قوس حوضه زمین در منطقه "سانجیانگ"، جنوب غربی چین (سری بررسی زمین شناسی چین)




توضیحاتی درمورد کتاب به خارجی

This open access book presents a new structural model of “multi-arc-basin-terrane system” based on the in-depth research of the Nujiang-Lancangjiang-Jinshajiang region, especially several Paleo-Tethys ophiolitic mélange belts and sets of arc-basin systems, and a new orogenic model of “The Hengduanshan Mountains” based on penetrated research on spatial-temporal framework and orogenic models of different orogenic belts under large-scale strike-slip-shear-nappe structures evolution. The authors paid special attention on the coupling relation between orogeny and metallogenesis. The metallogenesis and dynamic process are probed under the crust–mantle interaction and material-energy exchange-transmission background and the tectonic units evolution. The ore genesis and distribution of deposits have been thoroughly analyzed, and the metallogenic theories of \"multi-arc-basin-terrane\" and \"intracontinental tectonic transformation\" in the Nujiang-Lancangjiang-Jinshajiang region have been carried out. This book also illustrates how to explore metallic deposits in the Nujiang-Lancangjiang-Jinshajiang region by using the metallogenic regulations. Meanwhile, this book has high reference value for researchers working in the fields of basic geology, environmental geology, and energy geology.



فهرست مطالب

Editorial Board
Introduction
Contents
1 Tectonic Framework of Sanjiang Tethyan Metallogenic Domain
	Abstract
	1.1 Global Tectonic Background of the Formation of Sanjiang Tethyan Tectonic Domain
		1.1.1 Enlightenment from the Formation and Evolution of the Atlantic Ocean, Indian Ocean and Pacific Ocean
			1.1.1.1 Evolutionary Trend of Closing (Closure), Merging and Transferring of the Ocean Basin
			1.1.1.2 Destruction of the Oceanic Plate Caused by Three Types of Subductions
			1.1.1.3 Coexistence of Subduction, Obduction, Strike-Slip, Accretion and Tectonic Erosion
			1.1.1.4 Three Types of Orogenic Belts After Ocean Basin Closure
			1.1.1.5 Nonophiolite in Ocean Basins
			1.1.1.6 Changes in Oceanic Crusts
		1.1.2 Global Tectonic Setting
			1.1.2.1 Pan-Cathaysian Continent Group
			1.1.2.2 Gondwana Continental Group
			1.1.2.3 Tethys Ocean
	1.2 Division of Main Tectonic Units
	1.3 Basic Characteristics of Tectonic Units
		1.3.1 Yangtze Landmass (I)
			1.3.1.1 Longmen Mountain Thrust Zone (I1)
			1.3.1.2 Bayankala Foreland Basin (I2)
			1.3.1.3 Yajiang Relict Basin (I3)
			1.3.1.4 Yanyuan-Lijiang Depression Zone (I4)
			1.3.1.5 Chuxiong Foreland Basin (I5)
		1.3.2 Sanjiang Archipelagic Arc-Basin System (II)
			1.3.2.1 Ganzi-Litang Junction Zone (II1)
			1.3.2.2 Dege-Xiangcheng Island Arc (Yidun Island Arc Zone) (II2)
			1.3.2.3 Zhongza-Shangri-La Block (II3)
			1.3.2.4 Jinsha River-Ailaoshan Junction Zone (II4)
			1.3.2.5 Qamdo-Pu’er Block (II5)
			1.3.2.6 Lancang River Junction Zone (II6)
			1.3.2.7 Zuogong Block (II7)
			1.3.2.8 Lincang Magmatic Arc (II8)
		1.3.3 Bangong Lake-Shuanghu-Nujiang River-Changning-Menglian Mage-Suture Zone (III)
			1.3.3.1 Bangong Lake-Nujiang River Junction Zone (III1)
			1.3.3.2 Changning-Menglian Junction Zone (III2)
			1.3.3.3 Yuqiao Residual Arc Zone (III3)
		1.3.4 Gangdise-Gaoligong Mountain-Tengchong Arc-Basin System (IV)
			1.3.4.1 Baoshan Block (IV1)
			1.3.4.2 Shading-Lhorong Fore-Arc-Basin (IV2)
			1.3.4.3 Bowo-Tengchong Magmatic Arc (IV3)
			1.3.4.4 Xiachayu Magmatic Arc (IV4)
			1.3.4.5 Yarlung Zangbo River Junction Zone (IV5)
	References
2 Basic Characteristics and Evolution of Sanjiang Tethys Archipelagic Arc-Basin System
	2.1 Basic Characteristics and Main Arguments of Archipelagic Arc-Basin System Tectonics
		2.1.1 Proposal of Multi-Arc-Basin-Terrane (MABT) Tectonics
		2.1.2 Definition of Multi-Arc-Basin-Terrane (MABT) Tectonics
		2.1.3 Basic Characteristics of Multi-Arc-Basin-Terrane (MABT) Tectonics
			2.1.3.1 Specific Space–time Structure and Material Composition
			2.1.3.2 Three Types of Basement of Island Arcs or Frontal Arcs
			2.1.3.3 Three Types of Back-Arc-Basins
			2.1.3.4 Short Life of Back-Arc-Basins
			2.1.3.5 Three Different Types of Space–Time Evolution
			2.1.3.6 There Are Three Different Types of Collision Orogeny
		2.1.4 Main Arguments of Multi-Arc-Basin-Terrane (MABT) Tectonics
			2.1.4.1 Spatial–temporal Pattern of Coexistence of Three Landmasses and Three Oceans
			2.1.4.2 Long Period of Ocean Evolution
			2.1.4.3 Similar Original Scale of the Tethys Ocean and the Present Pacific Ocean
			2.1.4.4 Continental Margin Volcanic-Magmatic Arc and Multi-Arc-Basin-Terrane (MABT) Formed by the Two-Way Subduction of Ocean Lithosphere
			2.1.4.5 Existence of Ocean Basins Indicated by the Remnant Arc
			2.1.4.6 Action Mode of the Transformation of Oceanic-Continental Lithosphere Tectonic Systems
			2.1.4.7 Qinghai-Tibet Plateau Crust Mainly Composed of Remnant Arc Orogenic Belts
			2.1.4.8 Three Important Tectonic Processes of Qinghai-Tibet Plateau
	2.2 Space–Time Structure of Sanjiang Tethys Multi-Arc-Basin-Terrane (MABT)
		2.2.1 Space–time Structure and Evolution of Yidun Arc-Basin System
			2.2.1.1 Space–time Structure of Yidun Arc-Basin System
				Formation of Ganzi-Litang Ocean Basin and Development of Yidun Island Arc
				Spatial Distribution of Yidun Arc-Basin System
			2.2.1.2 Formation and Evolution of Yidun Arc-Basin System
				Characteristics and Properties of Yidun Island Arc “Basement”
				Formation and Evolution of Yidun Arc-Basin System
					Period of Subduction Orogeny (238–210 Ma)
					Collision Orogeny Period (208–138 Ma)
					Post-Orogenic Extension Period (138–75 Ma)
					Himalayan Intracontinental Orogeny (65–15 Ma)
		2.2.2 Temporal and Spatial Structure and Its Evolution of Jinsha River Arc-Basin System
			2.2.2.1 Temporal and Spatial Structure of Jinsha River Arc-Basin System
				Formation Age of Jinsha River Back-Arc Ocean Basin
				Spatial Distribution of Jinsha River Arc-Basin System
					Passive Margin Fold-Thrust Zone
					Ophiolite Tectonic Melange Zone
					Volcanic Zone of the Superimposed Rift Basin
					Shimianchang Tectonic Melange Zone
					Continental Margin Arc Volcanic Zone
			2.2.2.2 Formation and Evolution of Jinsha River Arc-Basin System
				Geological and Paleogeographic Features of “Metamorphic Soft Basement” in Pre-Devonian
				Formation and Evolution of Jinsha River Arc-Basin System
					Rift (Valley) Basin Stage (D)
					Ocean Basin Formation Stage (C1–P1)1
					Oceanic Crust Subduction and Destruction Stage (P12–P2)
					Arc-Land Collision Stage (T1–T21)
					Superimposed Rift Basin Stage (T22–T31)
					Foreland Basin Stage (T32–K)
					Intracontinental Convergence Stage (E–Q)
		2.2.3 Temporal and Spatial Structure and Its Evolution of Zhongza-Shangri-La Block
			2.2.3.1 Basement Formation Stage
			2.2.3.2 Stable Block Formation Stage
				Evolution Stage in Early Paleozoic
				Late Paleozoic Evolution Stage
			2.2.3.3 Reverse Polarity Orogenic Stage
		2.2.4 Temporal and Spatial Structure and Evolution of Qamdo Basin
			2.2.4.1 Composition and Characteristics of the Upper Crust Tectonic Bed
				Basement Tectonic Bed
				Upper Paleozoic Tectonic Bed
				Mesozoic Tectonic Bed
				Cainozoic Tectonic Bed
			2.2.4.2 Temporal and Spatial Structure of Qamdo Basin System
				Late Paleozoic Lithofacies Paleogeography and Basin Structure
				Mesozoic Lithofacies Paleogeography and (Back-Arc) Foreland Basin Structure
					Early and Middle Triassic Lithofacies Paleogeography and Basin Properties
					Late Triassic Lithofacies Paleogeography and Basin Properties
			2.2.4.3 Evolution and Orogeny of Qamdo Basin
				Evolution of Epicontinental Sea Basin During the Cleavage of Paleo-Tethyan Ocean in Devonian-Early (Middle) Carboniferous
				Evolution of Arc-Basin System Under the Subduction of Permian Paleo-Tethyan Ocean
				Collision Orogeny in Early and Middle Triassic
				Development and Evolution of Mesozoic Composite Foreland Basin in Qamdo Block
					Extensional Tectonics After Collision in the Early Period of Late Triassic
					Evolution of the Composite (Back-Arc) Foreland Basin in Qamdo Block in Late Triassic-Cretaceous
				Intracontinental Convergence and Its Tectonic Response in Himalayan
					Massive Right Strike-Slip Structure
					Formation of Strike-Slip Basin and Deep-Seated Magmatism in Paleogene
					Hedging System with the Giant Thrust Belt of North Lancang River as the Main Structure
					Nearly EW Tectonic
		2.2.5 Space–Time Structure and Evolution of Ailaoshan Arc-Basin System
			2.2.5.1 Space–Time Structure of Ailaoshan Arc-Basin System
			2.2.5.2 Formation Period of Ailaoshan Back-Arc Ocean Basin and Lvchun Continental Margin Arc
			2.2.5.3 Spatial Distribution of Ailaoshan Arc-Basin System
				Active Basement Thrust Zone in the Southwest Margin of Yangtze Continent
				Ailaoshan Ophiolite Melange Zone
				Mojiang-Lvchun Continental Margin Arc Zone
			2.2.5.4 Formation and Evolution of Ailaoshan Arc-Basin System and Arc-Land Collision Orogenic Belt
				Ocean-Land Transition Stage
				Left Strike-Slip Arc-Land Collision Orogenic Stage
				Stage of Lithosphere Extension and Basement Stripping
				Overthrust and Left Strike-Slip Stage
				Right Strike-Slip Fracture Stage of Red River
		2.2.6 Temporal and Spatial Structure and Evolution of Lanping Basin
			2.2.6.1 Back-Arc Foreland Basin Stage (Mesozoic)
				Abyssal-Bathyal Flysch Sedimentation Stage
				Marine Molasse Sedimentation Stage
				Continental Molasse Stage
			2.2.6.2 Strike-Slip Pull-Apart Basin Development Stage (Cenozoic)
		2.2.7 Temporal and Spatial Structure and Its Evolution of Tenasserim Arc-Basin System
			2.2.7.1 Temporal and Spatial Structure of Tenasserim Arc-Basin System
				Ocean Basin Formation Age and Tenasserim Islands Development Age
				Spatial Distribution of Tenasserim Arc-Basin System
					Dingqing-Zhayu-Bitu Junction Zone
					Jitang Residual Arc and Caprock
					Northern Lancang River Junction Zone
					Volcanic-Magmatic Arc in Riwoqê-Dongda Mountain
					Changning-Menglian Junction Zone
					Lincang Magmatic Arc
					Southern Lancang River Melange Zone
					Yunxian-Jinghong Volcanic Arc
			2.2.7.2 Evolution of Tenasserim Arc-Basin System
		2.2.8 Space–Time Structure and Evolution of Baoshan Block (Northern End of Danbang Micro-Landmass)
			2.2.8.1 Formation Stage of Stable Plateau (C-S)
			2.2.8.2 Formation Stage of Basin Series (D-P1)
			2.2.8.3 Formation Stage of Marginal Foreland Basin (P2-T3)
		2.2.9 Space–Time Structure and Evolution of Boxoila Ling-Gaoligong Arc-Basin System
			2.2.9.1 Formation Period of Nujiang Ocean Basin and Development Period of Gaoligong Mountain Magmatic Arc
			2.2.9.2 Spatial Pattern of Boxoila Ling-Gaoligong Arc-Basin System
				Gaoligong Overthrust Zone (Santaishan Ophiolite Melange Zone)
				Boxoila Ling-Gaoligong Magmatic Arc
				Parlung Zangbo Arc-Arc Collision Zone
	2.3 Geological Evolution of Sanjiang Region and the Adjacent Tethys Multi-Arc-Basin-Terrane (MABT)
		2.3.1 Evolution and Tectonic Framework of Sanjiang Multi-Arc-Basin-Terrane (MABT)
			2.3.1.1 Evolution of Sanjiang Tethys Tectonic Domain
				Destruction Stage of Pangea and Formation Stage of Proto-Tethys
				Formation Stage of Pan-Huaxia Continental Group
				Formation and Evolution of Paleo-Tethys
				Ocean-Land Transition of Paleo-Tethys
				Closure of Neo-Tethyan Ocean and Intracontinental Convergence
				Transformation and Orogeny of Cenozoic Sanjiang Intracontinental Tectonics
			2.3.1.2 Structural Pattern of Sanjiang Region
		2.3.2 Geological Evolution of Sanjiang Region and the Adjacent Tethys Multi-Arc-Basin-Terrane (MABT)
			2.3.2.1 Frontal Arc of Pan-Huaxia Continental Group and Early Paleozoic Qinling-Qilian-Kunlun Multi-Arc-Basin-Terrane (MABT)
			2.3.2.2 Late Paleozoic Qiangtang-Sanjiang Multi-Arc-Basin-Terrane (MABT) on the Southwest Margin of Pan-Huaxia Continental Group
			2.3.2.3 Gondwana Frontal Arc and Mesozoic Gangdise-Himalayan Multi-Arc-Basin-Terrane (MABT)
	References
3 Formation and Evolution of Sanjiang Collision Orogenic Belt
	3.1 Definition and Classification of Collision Orogenic Belt
		3.1.1 Definition of Collision
		3.1.2 Classification of Collision Orogenic Belts
	3.2 Types and Spatio-temporal Structure of Orogenic Belt in Sanjiang Area
		3.2.1 Continental Margin Orogenic Belt of Bayankala (Longmen Mountain and Jinping Mountain) in the Western Margin of Yangtze Landmass
		3.2.2 Shaluli Mountain Arc-Arc Collision Orogenic Belt
		3.2.3 Ningjing Mountain-Ailaoshan Land-Land and Land-Arc Collision Orogenic Belt
		3.2.4 Taniantaweng Residual Arc-Land Collision Orogenic Belt
		3.2.5 Meri Snow Mountain-Biluo Snow Mountain Arc-Land Collision Orogenic Belt
		3.2.6 Boshula Ridge-Gaoligong Mountain Frontal Arc-Land Collision Orogenic Belt
	3.3 Sanjiang and “Hengduan Mountain” Orogenic Process and Dynamics
		3.3.1 Global Plate Tectonic Setting of “Hengduan Mountain” Orogenic Process
		3.3.2 Basic Characteristics of “Hengduan Mountain” Orogeny
			3.3.2.1 Thrust Tectonics
				Thrust Sheet with Westward Overthrust Nappe in the East
					Haba Snow Mountain-Diancang Mountain-Ailaoshan Thrust Sheet
					Zhongza-Shangri-La Thrust Sheet
					Obducted Sheet in Jinsha River Melange Zone
					Thrust Sheet in Arc Volcanic Zone in Jiangda-Weixi
				Thrust Sheet with Eastward Overthrust Nappe in the West
					Dongda Mountain Thrust Sheet
					Thrust Sheet of Jiayuqiao Metamorphic Terrane
					Chongshan-Lincang Thrust Sheet
					Gaoligong Mountain Thrust Sheet
			3.3.2.2 Large-Scale Sinistral or Dextral Strike-Slip Tectonics
				Deformation of India-Myanmar Mountains
				X-Type Strike-Slip Fault System
				Strike-Slip Tectonics on the East Side of Hengduan Mountain
			3.3.2.3 Extensional Detachment Tectonics
		3.3.3 Stress Field and Kinematic Model of Intracontinental Deformation After Hengduan Mountain Collision
			3.3.3.1 Division of Deformation Zones
			3.3.3.2 Stress Field and Kinematics Model
			3.3.3.3 Regulation of Strike-Slip Transformation in Paleogene and Neogene
		3.3.4 Dynamic Mechanism and Effect of Intracontinental Deformation After Hengduan Mountain Collision
			3.3.4.1 Deformation Mechanism in the Eastern Part of Qinghai-Tibet Plateau
			3.3.4.2 Formation of Yunnan-Tibet Vortex Tectonics Due to Oblique Collision of Indian Continent
			3.3.4.3 Intracontinental Subduction and Blocking of Yangtze Plate and Comprehensive Effect of the Oblique Collision of Indian Plate
				Magmatic Activity and Mineralization
				Tectonic Deformation
				Sedimention Records
	References
4 Mineralization and Metallogenic System in Sanjiang Region
	4.1 Metallogenic Event of Archipelagic Arc-Basin-Block System
		4.1.1 Paleozoic Metallogenic Events
			4.1.1.1 Early Paleozoic Є/O Metallogenic Period
			4.1.1.2 Late Paleozoic C/P Metallogenic Period
		4.1.2 Late Triassic Metallogenic Events
			4.1.2.1 Metallogenic Events in the Yidun Island Arc Orogenic Belt
			4.1.2.2 Metallogenic Events of Jinsha River Arc-Basin System
			4.1.2.3 Metallogenic Events of the Southern Lancang River Arc-Basin System
			4.1.2.4 Lanping Basin
	4.2 Metallogenic Event of Intracontinental Conversion Orogeny
		4.2.1 Porphyry Copper–Gold Metallogenic Events
		4.2.2 Metallogenic Events of Gold Deposits in Shear Zones
		4.2.3 Metallogenic Events of Tectonic-Fluid Polymetallics
			4.2.3.1 Thrust Nappe Structure-Fluid Metallogenic Event
			4.2.3.2 Metallogenic Events of Strike-Slip Pull-Apart Basin
			4.2.3.3 Extensional Detachment Structure-Fluid Metallogenic Event
		4.2.4 Metallogenic Events of Syn-Collision Granite Tin
	4.3 Archipelagic Arc-Basin System and Collisional Orogenic Metallogenic System
		4.3.1 Metallogenic System Types in the Sanjiang Orogenic Belt
			4.3.1.1 Concept and Connotation of Metallogenic System and Metallogenic Series
			4.3.1.2 Metallogenic System Types
				Boundary Scale and Classification Level of Metallogenic System
				Metallogenic System Classification
		4.3.2 The Continental Margin Splitting Metallogenic Giant System
			4.3.2.1 The Background of Metallogenic System
				Yun County-Jinghong Rift Volcanic Rock Belt
				Changning-Menglian Rift-Ocean Basin Volcanic Rock Belt
			4.3.2.2 Metallogenic System Types
				Rift Metallogenic System
				Ocean Basin Metallogenic System
			4.3.2.3 The Spatiotemporal and Chemical Structure of the Metallogenic System
				Rift Metallogenic System
				Ocean Basin Metallogenic System
			4.3.2.4 Main Controlling Factors of Metallogenic System
				The Main Controlling Factors of the Rift Metallogenic System
					Magmatic Hydrothermal Metallogenic Subsystem
					Volcanic Hydrothermal Fluid Metallogenic Subsystem
					Volcanic-Sedimentary Metallogenic Subsystem
				Main Controlling Factors of Ocean Basin Metallogenic System
					Main Controlling Factors of Volcanic-Sedimentary Metallogenic Subsystem
					Main Controlling Factors of Hydrothermal Fluid Metallogenic Subsystem
		4.3.3 The Continental Marginal Convergent Metallogenic Giant System
			4.3.3.1 The Background of Metallogenic System
				Yidun Island Arc Collision Orogenic Belt
				Jinsha River Orogenic Belt
			4.3.3.2 Metallogenic System Types
				Subduction Orogenic Metallogenic System
				Post-orogenic Extensional Metallogenic System
			4.3.3.3 Metallogenic System Structure
				Subduction Orogenic Metallogenic System
				Post-orogenic Extensional Metallogenic System
			4.3.3.4 Main Controlling Factors of Metallogenic System
				Main Controlling Factors of Subduction Orogenic Metallogenic System
					Main Controlling Factors of Subduction Orogenic Metallogenic System in Yidun Orogenic Belt
					Main Controlling Factors of Hydrothermal Fluid Metallogenic Subsystem in Intra-arc Rift
					Back-Arc Volcanic Hydrothermal Metallogenic Subsystem
				Main Controlling Factors of Subduction Orogenic Metallogenic System in Jinsha River Orogenic Belt
					The Submarine Hydrothermal Fluid Metallogenic Subsystem in the Oceanic Arc Environment is Located in the Jinsha River Orogenic Belt
					Volcanic Hydrothermal Metallogenic Subsystem in Continental Margin Arc Environment
					Main Controlling Factors of Extensional Metallogenic System After Orogeny
		4.3.4 Intracontinental Convergent Giant Metallogenic System
			4.3.4.1 The Background of Intracontinental Convergent Metallogenic System
				The Profound Transformation of Intracontinental Convergence to Physical Structure of Sanjiang Orogenic Belt Is the Most Important Constraint Condition for Mineralization
				Intracontinental Convergence Mineralization
				Two Tectonic Mechanisms Controlling the Intracontinental Convergent Metallogenic System
			4.3.4.2 Intracontinental Magmatic Metallogenic System
				Intracontinental Crust-Derived Magmatic Metallogenic Subsystem
				Intracontinental Mantle-Derived Magmatic Metallogenic Subsystem
					The Tectonic Environment of Porphyry Formation and Magma Source Area
					Extensional Tectonics and Deep-Seated Magmatism
					Magmatic Mineralization
					Ore-Gathering Mechanism of Porphyry System. Predecessors Have Established Generally Applicable Genetic Models and Descriptive Models for Porphyry Deposits
			4.3.4.3 Metallogenic System of Tectonic Dynamic Fluid
				Thrust Nappe Structure-Fluid Metallogenic Subsystem
				Extensional Detachment Structure-Fluid Metallogenic Subsystem
				Metallogenic System of Strike-Slip Pull-Apart Basin
	4.4 Analysis of Key Metallogenic Geological Process
		4.4.1 Evolution of Mineralization
			4.4.1.1 Evolution of Metallogenic Environment
			4.4.1.2 Evolution of Metallogenic Types
			4.4.1.3 Evolution of Metallogenic Metal Assemblages
			4.4.1.4 Evolution of Metallogenic Intensity
		4.4.2 Analysis of Key Metallogenic Geological Process
			4.4.2.1 Subduction Orogeny and Arc-Basin System
				Yidun Island Arc Orogenic Belt
				Jinsha River Orogenic Belt
				Lancang River Orogenic Belt
			4.4.2.2 Lithospheric Delamination (Detachment) and Post-collisional Orogenic Extensional System
				Collisional Orogeny and Collision Orogenic Belt
				Post-collision Extension and Volcanic-Rift Basin
				Lithospheric Delamination and Plate (Detachment)
			4.4.2.3 Collision Uplifts and Large-Scale Strike-Slip Fault Systems of Qinghai-Tibet Plateau
				Collision of Indian and Asian Continents and Large-Scale Strike-Slip Faulting
				Coupled Strike-Slip and Extension and Generation of Ore-Bearing Porphyry Belts
				Coupled Strike-Slip and Torsional Thrust and Generation of Strike-Slip Pull-Apart Basins
				Strike-Slip Faulting and Shearing Napping
		4.4.3 Analysis of Important Ore-Forming Environments and Mineralizations
			4.4.3.1 Mineralizing Porphyry System
				Temporal and Spatial Distributions of Ore-Bearing Porphyries
				Lithogeochemical Characteristics
				Mineralization Characteristics of Ore-Bearing Porphyries
				Formation Environment and Diagenetic Mode of Porphyry
					Large-Scale Strike-Slip Fault System Under Intercontinental Collision-Occurrence Background of Ore-Bearing Porphyries
					Subduction-Related Mixed Crust/Mantle Source—Possible Source of Ore-Bearing Porphyries
			4.4.3.2 Large Basin System
				Evolution and Mineralizations of Intracontinental Rift-Depression Basin
				Evolution and Mineralization of Foreland Basin
				Evolution and Mineralization of Strike-Slip Basin
				Summary of Basin Fluidization and Mineralization
	4.5 Preliminary Discussion of Archipelagic Arc-Basin Metallogenic Theory
		4.5.1 Temporal and Spatial Structure and Mineralization Pattern of Multi-Arc-Basin-Terrane (MABT)
			4.5.1.1 Yidun Arc-Basin System and Mineralizations
			4.5.1.2 Jinshajiang Arc-Basin System and Mineralizations
			4.5.1.3 Taniantaweng Arc-Basin System and Mineralizations
			4.5.1.4 Boshulaling-Gaoligong Arc-Basin System and Mineralizations
			4.5.1.5 Edges of Stable Blocks and Mineralizations
		4.5.2 Evolution and Metallogenic Mechanism of Multi-Arc-Basin-Terrane (MABT)
			4.5.2.1 Metallogenic Mechanism During Continental Margin Split Period
			4.5.2.2 Metallogenic Mechanism During Ocean Basin Spreading Period
			4.5.2.3 Metallogenic Mechanism During Ocean Crust Subduction Period
			4.5.2.4 Metallogenic Mechanism During Arc-Arc/continent Collision Period
			4.5.2.5 Metallogenic Mechanism During Post-collision Extension Period
		4.5.3 Preliminary Discussion on Archipelagic Arc-Basin Metallogenic Theory
			4.5.3.1 Foundation of Archipelagic Arc-Basin Metallogenic Theory
			4.5.3.2 Definition of Archipelagic Arc-Basin Metallogenic Theory
			4.5.3.3 In-Depth Study of Archipelagic Arc-Basin Metallogenic Theory
	4.6 Preliminary Discussion on Intracontinental Tectonic Transition Metallogenic Theory
		4.6.1 Tectonic Transition and Mineralization Driving
			4.6.1.1 Tectonic Transition Environment for Mineralizations
			4.6.1.2 Drive of Abnormal Thermal Energy for Mineralizations
			4.6.1.3 Drive of Tectonic Stresses for Mineralizations
		4.6.2 Metallogenic Systems and Typical Deposits
			4.6.2.1 Magmatic Hydrothermal Cu–Mo–Au Metallogenic System
			4.6.2.2 Orogenic-Type Au Metallogenic System
			4.6.2.3 Regional Pb–Zn Polymetallic Brine Metallogenic System
		4.6.3 Metallogenic Systems and Development Mechanisms of Large Deposits
		4.6.4 Definition of Intracontinental Tectonic Transition Metallogenic Theory
	References
5 Regional Metallogenic Models
	5.1 Division of Metallogenic Belts
		5.1.1 Principles of Metallogenic Division
	5.2 Division Scheme of Metallogenic Belts
	5.3 Regional Metallogenic Models for the Major Sanjiang Metallogenic Belts
		5.3.1 Ganzi-Litang Au Metallogenic Belt (I)
		5.3.2 Geological Evolution and Mineralization
		5.3.3 Regional Metallogenetic Model
	5.4 Dege-Xiangcheng Cu-Mo-Pb–Zn-Ag Polymetallic Metallogenic Belt (II)
		5.4.1 Geological Evolution and Mineralization
		5.4.2 Regional Metallogenetic Model
	5.5 Jinshajiang-Ailaoshan Au-Cu-PGEs Ore Belt (III)
		5.5.1 Jinshajiang Sub-Belt
			5.5.1.1 Geological Evolution and Mineralization
		5.5.2 Ailaoshan Sub-Belt
	5.6 Jiangda-Weixi-Lvchun Fe-Cu-Pb–Zn Polymetallic Ore Belt (IV)
		5.6.1 Geological Evolution and Mineralization
		5.6.2 Regional Metallogenetic Model
	5.7 Changdu-Lanping-Pu’er Cu-Pb–Zn-Ag Polymetallic Ore Belt (V)
		5.7.1 Yulong-Mangkang Porphyry Cu-Au(-Mo) Sub-Belt
		5.7.2 Changdu-Lanping Pb–Zn-Ag Sub-Belt
	5.8 Regional Metallogenetic Model
	5.9 Zaduo-Jinggu-Jinghong Cu-Sn Polymetallic Ore Belt (VI)
		5.9.1 Geological Evolution and Mineralization
		5.9.2 Regional Metallogenetic Model
	5.10 Leiwuqi-Lincang-Menghai Sn-Fe-Pb–Zn Polymetallic Ore Belt (VII)
		5.10.1 Leiwuqi-Zuogong Sub-Belt
			5.10.1.1 Geological Evolution and Mineralization
			5.10.1.2 Regional Metallogenetic Model
		5.10.2 Lincang-Menghai Sub-Belt
			5.10.2.1 Geological Evolution and Mineralization
			5.10.2.2 Regional Metallogenetic Model
	5.11 Changning-Menglian Pb–Zn-Ag Polymetallic Ore Belt (VIII)
		5.11.1 Geological Evolution and Mineralization
		5.11.2 Regional Metallogenetic Model
	5.12 Baoshan-Zhenkang Pb–Zn-Hg and Rare Metal Ore Belt (IX)
		5.12.1 Geological Evolution and Mineralization
		5.12.2 Regional Metallogenetic Model
		5.12.3 Tengchong-Lianghe Sn-W and Rare Metals Ore Belt (X)
		5.12.4 Geological Evolution and Mineralization
		5.12.5 Regional Metallogenetic Mechanism
	References
6 Geological Prospecting Method of Sanjiang and Integration of Exploration Technologies
	6.1 Integrated Technologies for Exploration of Porphyry Copper (Gold, Molybdenum) Ore Deposits
		6.1.1 Background of Ore Deposit Prospecting
		6.1.2 Integrated Technologies for Exploration
			6.1.2.1 Porphyry Ore Deposit Model
			6.1.2.2 Extraction of Hyperspectral Data (Hyperspectral Images) and Alteration Information
			6.1.2.3 PIMA Application
			6.1.2.4 Magnetic and Electrical Measurement
	6.2 Integrated Technologies for Exploration of Volcanic-Associated Massive Sulfide Deposit (VMS) and Sedimentary Exhalative Deposit (Sedex)
		6.2.1 Integrated Technologies of “Metallogenic Model + Horizon + Transient Electromagnetics + Induced Polarization Method” Have Achieved a Breakthrough in Prospecting of Dapingzhang Copper Polymetallic Deposit
			6.2.1.1 Comprehensive Geophysical Prospecting Experiment of Profile
			6.2.1.2 Area Comprehensive Geophysical Prospecting
		6.2.2 Location Prediction of Ore Body in Luchun Zn-Cu-Pb (Ag) Polymetallic Ore Target Area
			6.2.2.1 High-Precision Magnetic Method
				Determination of Geological Physical Properties
				Characteristics of High-Precision Magnetic Anomalies
				Analytical Continuation of Magnetic Anomaly
					Upward Continuation of Magnetic Anomaly
					Downward Continuation of Magnetic Anomalies
			6.2.2.2 Transient Electromagnetics (TEM)
				Arrangement of Transient Electromagnetics (TEM) Exploration Line
				Results of Transient Electromagnetics
			6.2.2.3 Amplitude-Frequency Induced Polarization
	6.3 Location Prediction of Ore Body and Ore Deposit in Pb, Zn, Cu, Ag Polymetallic Ore Target Area with Hot Ditch in Gacun’s Peripheral Area
		6.3.1 Magnetic Measurement Results
		6.3.2 Rapid Analysis of X-ray Fluorescence
		6.3.3 Transient Electromagnetics (TEM)
		6.3.4 Controlled Source Audio-Frequency Magnetotellurics (CSAMT)
	6.4 Location Prediction of Ore Deposit and Ore Body in Nongduke Ag Polymetallic Ore Target Area
		6.4.1 Physical Properties of the Target Area
		6.4.2 Results and Analysis of Magnetic Method
		6.4.3 Results of Amplitude-Frequency IP, γ-ray Energy Spectrum and X-ray Fluorescence Analysis
	6.5 Ore Deposit and Ore Body Location Prediction of Qingmai Pb–Zn-Cu-Ag Ore Target Area
		6.5.1 Characteristics of Regional Geophysical Prospecting, Geochemical Prospecting and Remote Sensing
		6.5.2 Geological Information of the Target Area
		6.5.3 Physical Properties of the Target Area
		6.5.4 Comprehensive Geophysical Prospecting Survey Results and Analysis
		6.5.5 Conclusions and Suggestions
	6.6 Integrated Technologies for Exploration of Shear Zone Type Gold Deposits (Orogenic Gold Deposits)
	6.7 Integrated Technologies for Exploration of Hydrothermal Vein Type Lead–Zinc Polymetallic Deposits
		6.7.1 “Thermal Cycle” Mineralization in Lanping Basin
		6.7.2 Demonstration Research of the Exploration Technology Integration
	6.8 Integrated Technologies for Exploration of Skarn/porphyry Concealed Deposits
		6.8.1 Discovery and Evaluation of Hetaoping Cu-Pb–Zn-Fe-Au Polymetallic Deposit in Baoshan. An Example of “Metallogenic System + Gravity + Magnetism + Multiple Electrical Methods” to Find Concealed Deposits
		6.8.2 The Prospecting Breakthrough of Deep Concealed Porphyry Molybdenum-Copper Deposit in Laochang Lead Deposit, Lancang “Metallogenic System + Gravity + Magnetism + Multiple Electrical Methods”
			6.8.2.1 Metallogenic System
			6.8.2.2 Gravity Measurement
			6.8.2.3 High-Precision Magnetic Survey
			6.8.2.4 Electrical Measurement
				High-Frequency Magnetotelluric (EH-4) Measurement
				Transient Electromagnetics Measurement
	References




نظرات کاربران