ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications (Metal Oxides)

دانلود کتاب فناوری‌های پودر اکسید فلز: اصول، روش‌ها و کاربردهای پردازش (اکسیدهای فلزی)

Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications (Metal Oxides)

مشخصات کتاب

Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications (Metal Oxides)

ویرایش: 1 
نویسندگان:   
سری: Metal Oxides 
ISBN (شابک) : 0128175052, 9780128175057 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 437 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications (Metal Oxides) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فناوری‌های پودر اکسید فلز: اصول، روش‌ها و کاربردهای پردازش (اکسیدهای فلزی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فناوری‌های پودر اکسید فلز: اصول، روش‌ها و کاربردهای پردازش (اکسیدهای فلزی)



تکنولوژی‌های پودر اکسید فلز: مبانی، روش‌های پردازش و کاربردها اصول، روش‌های پردازش و کاربردهای این سیستم مواد کلیدی را بررسی می‌کند. موضوعات پرداخته شده به طور جامع شامل خواص شیمیایی و فیزیکی، سنتز، آماده سازی، روش های پردازش پذیرفته شده و جدید، مدل سازی و شبیه سازی می شود. این کتاب اطلاعات اساسی در مورد ویژگی‌های کلیدی تأثیرگذار بر عملکرد، مانند اندازه ذرات و ساختار بلوری، همراه با روش‌هایی برای اندازه‌گیری، تجزیه و تحلیل و ارزیابی ارائه می‌کند. در نهایت، برنامه های کاربردی مهم، از جمله کاربردهای زیست پزشکی، انرژی، الکترونیک و مواد پوشش داده شده است.


توضیحاتی درمورد کتاب به خارجی

Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications reviews the fundamentals, processing methods and applications of this key materials system. Topics addressed comprehensively cover chemical and physical properties, synthesis, preparation, both accepted and novel processing methods, modeling and simulation. The book provides fundamental information on the key properties that impact performance, such as particle size and crystal structure, along with methods to measure, analyze and evaluate. Finally, important applications are covered, including biomedical, energy, electronics and materials applications.



فهرست مطالب

Cover
Metal Oxide Powder Technologies: Fundamentals, Processing Methods
and Applications
Copyright
Contents
List of contributors
About the author
About the author
Preface to the series
Preface
1 Physical studies of metal oxide powders
	1.1 Introduction
	1.2 Metal oxides
	1.3 Metal oxides powder in dielectric materials
	1.4 Physical properties
	1.5 Properties of GaO
	1.6 Characterization and analysis
	1.7 Conclusion
	References
2 Chemical studies of metal oxide powders
	2.1 Introduction
		2.1.1 Chemical bond present in metal oxide
		2.1.2 Defects and diffusion in metal oxides
	2.2 Titanium dioxide chemical studies
	2.3 Zinc oxide chemical studies
	2.4 Modification of metal oxide
	2.5 Conclusion
	Acknowledgments
	References
3 Synthesis and preparation of metal oxide powders
	3.1 Introduction
	3.2 Synthesis and preparation of metal oxide powders
		3.2.1 Chemical methods
			3.2.1.1 Sol–gel method
			3.2.1.2 Hydrothermal method
			3.2.1.3 Chemical vapor deposition
			3.2.1.4 Thermal decomposition processing
			3.2.1.5 Sonochemical method
		3.2.2 Physical methods
			3.2.2.1 Comminution
			3.2.2.2 Spray drying
			3.2.2.3 Spray pyrolysis
			3.2.2.4 Freeze drying
			3.2.2.5 Pulsed laser ablation
			3.2.2.6 Vaporization–condensation
		3.2.3 Biological methods
	3.3 Concluding remarks
	References
4 Sintering behaviors of Fe3O4 and CaO powders roasted under CO–CO2–N2 atmosphere
	4.1 Introduction
	4.2 Experimental
		4.2.1 Materials
		4.2.2 Methods
			4.2.2.1 Roasting tests
			4.2.2.2 Fusion temperature measurement
			4.2.2.3 Characterization
	4.3 Results and discussion
		4.3.1 Phase diagrams of CaO–Fe3O4 system under CO–CO2–N2 and air atmosphere
		4.3.2 Phase transformation of CaO and Fe3O4 mixtures in CO–CO2–N2 atmosphere
			4.3.2.1 Effect of temperature
			4.3.2.2 Effect of CO content
		4.3.3 Liquid phase formation of CaO–Fe3O4 system in CO–CO2–N2 atmosphere
		4.3.4 Reaction mechanism between CaO and Fe3O4 under CO–CO2–N2 atmosphere
	4.4 Conclusions
	Acknowledgments
	References
5 Surface modification, including polymerization, nanocoating, and microencapsulation
	5.1 Introduction
	5.2 Classification of surface treatment
	5.3 Surface treatment including polymerization
	5.4 Effects of coating process on tribological properties of polymer and alloys
	5.5 Surface treatment including nanocoating and microencapsulation
	5.6 Effects of WS2 nanoparticles lubricants on polymer and alloys
	5.7 Conclusion
	Acknowledgment
	References
6 Application of metal oxides in composites
	6.1 Introduction
		6.1.1 Application of metal oxide powders in ceramic matrix composites
			6.1.1.1 Processing of oxide-based ceramic matrix composites
				Cold pressing followed by sintering
				Hot pressing
				Slurry infiltration
				Lamination process
			6.1.1.2 Some examples of oxide-based ceramic matrix composites
				Alumina–titanium carbide composites
				Alumina–silicon carbide composites
				Alumina–zirconia composites
				Alumina–alumina composites
				Other oxide-based ceramic matrix composites
		6.1.2 Application of metal oxide powders in metal matrix composites
			6.1.2.1 Processing methods of particulate-reinforced metal matrix composites
				Standard powder metallurgy
				In situ powder metallurgy
				Stir casting
				Infiltration method
			6.1.2.2 Some examples of metal matrix composites reinforced with metal oxide powders
				Aluminum matrix composites
				Magnesium matrix composites
				Titanium matrix composites
				Copper matrix composites
				Iron matrix composites
		6.1.3 Application of metal oxides in polymer matrix composites
			6.1.3.1 Alumina-reinforced polymer matrix composites
			6.1.3.2 SiO2-reinforced polymer matrix composites
			6.1.3.3 TiO2-reinforced polymer matrix composites
			6.1.3.4 ZnO-reinforced polymer matrix composites
	6.2 Conclusion
	References
7 Metal-oxide powder technology in biomedicine
	7.1 Introduction
	7.2 Syntheses
	7.3 Cytotoxicity
	7.4 Applications
		7.4.1 Bioimaging and theranostics
		7.4.2 Biosensing
		7.4.3 Therapeutic applications
			7.4.3.1 Cancer therapy
			7.4.3.2 Other therapies
	7.5 Antibacterial behavior
		7.5.1 Replacing antibiotics
		7.5.2 Orthopedic and dental formulations
	7.6 The antibacterial pathways
	7.7 Discussions and conclusion
	References
8 Mechanical and physical methods for the metal oxide powders production
	8.1 Introduction
	8.2 Production of metal oxides powder by using crushing and milling
		8.2.1 Mechanical alloying
		8.2.2 Mechanical milling (MM) or grinding
		8.2.3 Mechanical disordered
	8.3 Production of metal oxides powders using evaporation techniques
		8.3.1 Simple (or thermal) evaporation technique
		8.3.2 Laser evaporation technique
	8.4 Atomization for metal oxide powder production
		8.4.1 Atomization mechanism
	8.5 Physical vapor deposition
	8.6 Mixed methods
		8.6.1 Mechanochemical method
		8.6.2 Reactive milling technique
		8.6.3 Cold stream (spray) process
	8.7 Conclusion
	Acknowledgment
	References
9 Chemical processes of metal oxide powders
	9.1 Introduction
	9.2 Sol–gel method
	9.3 Microwave-assisted synthesis
	9.4 Thermal decomposition
	9.5 Solvothermal synthesis
	9.6 Evaporation–condensation technique
	9.7 Thermal oxidation technique
	9.8 Hydrothermal technique
	9.9 Atomic or molecular condensation
	9.10 Cryochemical synthesis
	9.11 Hydrothermal synthesis
	9.12 Coprecipitation methods
	9.13 Microemulsion technique
	9.14 Template/surface derivatized methods
	9.15 Conclusion
	References
10 Thermal protection coatings of metal oxide powders
	10.1 Metal oxides—Introduction
		10.1.1 Classification of metal oxides
	10.2 Necessity of protection coatings
	10.3 Various coating technologies
		10.3.1 Chemical vapor deposition techniques
			10.3.1.1 Sol–gel deposition method
			10.3.1.2 Chemical vapor deposition
			10.3.1.3 Spray pyrolysis
			10.3.1.4 Dip coating
			10.3.1.5 Atomic layer deposition
		10.3.2 Physical vapor deposition
			10.3.2.1 Steps involved in the process of physical vapor deposition techniques
			10.3.2.2 Merits of physical vapor deposition techniques
			10.3.2.3 Thermal evaporation
			10.3.2.4 Pulsed laser deposition
			10.3.2.5 DC sputtering
			10.3.2.6 Radio-frequency sputtering
			10.3.2.7 Molecular beam epitaxy
			10.3.2.8 Flash evaporation method
			10.3.2.9 Electron beam evaporation
			10.3.2.10 Ion plating technique
	10.4 Conclusion
	References
11 Metal oxide nanoparticles in biomedical applications
	11.1 Introduction and overview of metal oxides in biomedical applications
	11.2 Structural diversity and its relationship to the properties of the metal oxides
	11.3 Important considerations and challenges for the use of metal oxides in biomedical applications
	11.4 General synthesis of metal oxides and highlight on the biological synthesis of metal oxides
	11.5 Commonly used metal oxides in biomedical applications
		11.5.1 Iron oxides
		11.5.2 Zinc oxide
		11.5.3 Titanium oxide
		11.5.4 Other metal oxides used in biomedical applications
	11.6 Biomedical application of metal oxides
		11.6.1 Drug delivery and theranostic applications
		11.6.2 Cancer therapy
		11.6.3 Implants
		11.6.4 Antibacterial treatment and wound healing
	11.7 Toxicology of metal oxides
		11.7.1 Oxidative stress
		11.7.2 Cytotoxicity
		11.7.3 Genotoxicity
		11.7.4 Inflammation
	11.8 Conclusion
	References
12 Metal oxides powder technology in energy technologies
	12.1 Introduction: importance of energy technologies in our life
	12.2 Fuel cells and metal oxides powder technology
	12.3 Applications of SOFC
	12.4 Solar cells and metal oxides powder technology
	12.5 Metal oxides powder technology
	12.6 Supercapacitor and metal oxides powder technology
	12.7 Industrial emissions and metal oxides powder technology
	12.8 Conclusion
	References
13 Metal oxides in electronics
	13.1 Introduction
	13.2 Transistors
	13.3 Diodes
	13.4 Photodetectors
	Conclusion
	References
14 Metal oxide powder technologies in catalysis
	14.1 Introduction
	14.2 Supported metal oxides
		14.2.1 Catalyst molecular structure
	14.3 Synthesis methods of supported catalyst oxides
		14.3.1 Impregnation method
		14.3.2 Precipitation/coprecipitation
		14.3.3 Grafting
		14.3.4 Chemical vapor deposition
		14.3.5 Sol–gel method
		14.3.6 Hydrothermal method
		14.3.7 Flame hydrolysis
	14.4 Applications
		14.4.1 Catalytic oxidation of methanol
		14.4.2 Selective catalytic reduction of NOx
		14.4.3 Catalytic hydrogenation of carbon monoxide
		14.4.4 Catalytic metathesis of olefins
		14.4.5 Catalytic polymerization of olefins
	14.5 Summary
	References
15 Metal oxide for heavy metal detection and removal
	15.1 Introduction
	15.2 Distribution of heavy metal in Malaysia
	15.3 Heavy metal detection
		15.3.1 Electrochemical technique for detection of heavy metal
		15.3.2 Biosensor
	15.4 Heavy metal ions removal
		15.4.1 Adsorption method
		15.4.2 Photocatalyst
	15.5 Conclusion
	15.6 Acknowledgments
	References
16 Solution combustion synthesis of metal oxide nanoparticles for membrane technology
	16.1 Introduction
	16.2 Experimental procedures
		16.2.1 Introduction
		16.2.2 Preparation of metal oxides by solution combustion method
		16.2.3 Synthesis of CuO, NiO, and ZnO nanoparticles
		16.2.4 Assay for antimicrobial activity of metal oxide nanoparticles against microorganisms
	16.3 Result and discussion
		16.3.1 Structural analysis
		16.3.2 Surface morphological studies
		16.3.3 Antimicrobial activity of floral CuO nanoparticles
		16.3.4 Antimicrobial activity of octahedral NiO nanoparticles
		16.3.5 Antimicrobial activity of ZnO nanoflakes
	16.4 Conclusion
	Acknowledgment
	References
17 Three-dimensional printing of ceramic powder technology
	17.1 Using three-dimensional printed ceramic for medical applications
	17.2 Application of three-dimensional printed ceramic in mechanics
	17.3 The three-dimensional printing technology in physics
	17.4 Conclusion
	References
18 Metal oxides powder technology in dielectric materials
	18.1 Introduction
	18.2 Dielectric materials: properties and behaviors
		18.2.1 Dielectric materials
		18.2.2 Types of dielectric materials
		18.2.3 Dielectric fundamentals
	18.3 Metal oxide powder in dielectric materials
		18.3.1 ZnO, TiO2, and other metal oxides
		18.3.2 Dielectric materials: ferroelectric and application
			18.3.2.1 Ferroelectric materials
			18.3.2.2 Examples and applications
		18.3.3 Dielectric properties of metal oxides powder dispersions in paraffin oil
			18.3.3.1 Aluminum
			18.3.3.2 Iron and Cu
			18.3.3.3 Titanium
	18.4 Review of metal oxides powder technologies in dielectric materials
		18.4.1 Introduction: metal oxides powder as dielectric materials
		18.4.2 Properties of the metal oxide powders as dielectric materials
	18.5 Conclusion
	References
Index
Back Cover




نظرات کاربران