ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications

دانلود کتاب چارچوب‌های فلز-آلی برای واکنش‌های شیمیایی: از تبدیل‌های آلی تا کاربردهای انرژی

Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications

مشخصات کتاب

Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications

ویرایش: 1 
نویسندگان: , , , , , ,   
سری:  
ISBN (شابک) : 0128220996, 9780128220993 
ناشر: Elsevier 
سال نشر: 2021 
تعداد صفحات: 491 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 37 مگابایت 

قیمت کتاب (تومان) : 32,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب چارچوب‌های فلز-آلی برای واکنش‌های شیمیایی: از تبدیل‌های آلی تا کاربردهای انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب چارچوب‌های فلز-آلی برای واکنش‌های شیمیایی: از تبدیل‌های آلی تا کاربردهای انرژی



چارچوب‌های فلز-آلی برای واکنش‌های شیمیایی: از تبدیل‌های آلی تا کاربردهای انرژی جدیدترین اطلاعات در مورد مواد MOFs را گرد هم می‌آورد که فناوری‌های اخیر در زمینه ساخت و طراحی را پوشش می‌دهد. این کتاب جنبه‌های مختلف واکنش‌های ذخیره‌سازی انرژی و کاتالیزورها، از جمله تکنیک‌های آماده‌سازی، طراحی و شناسایی مواد و کاربردهای MOF را پوشش می‌دهد. این منبع جامع برای محققان و دانش‌آموزان پیشرفته‌ای که چارچوب‌های فلزی-آلی را در دانشگاه و صنعت مطالعه می‌کنند، ایده‌آل است.

چارچوب‌های آلی فلزی (MOFs) پلیمرهای نانومتخلخلی هستند که از کانون‌های فلزی معدنی تشکیل شده‌اند که توسط لیگاندهای طبیعی به هم متصل شده‌اند. این موجودات به دلیل خواص فیزیکی و شیمیایی استثنایی که آنها را در زمینه های مختلف از جمله پزشکی، انرژی و محیط زیست مفید می کند، به یک منطقه داغ تحقیقاتی تبدیل شده اند. از آنجایی که شرایط ترکیبی به شدت خواص این ترکیبات را تحت تأثیر قرار می دهد، انتخاب یک تکنیک مصنوعی مناسب که محصولی با مورفولوژی همگن، پراکندگی اندازه کوچک و پایداری حرارتی بالا تولید کند، اهمیت ویژه ای دارد.


توضیحاتی درمورد کتاب به خارجی

Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications brings together the latest information on MOFs materials, covering recent technology in the field of manufacturing and design. The book covers different aspects of reactions from energy storage and catalysts, including preparation, design and characterization techniques of MOFs material and applications. This comprehensive resource is ideal for researchers and advanced students studying metal-organic frameworks in academia and industry.

Metal-organic frameworks (MOFs) are nanoporous polymers made up of inorganic metal focuses connected by natural ligands. These entities have become a hot area of research because of their exceptional physical and chemical properties that make them useful in di?erent ?elds, including medicine, energy and the environment. Since combination conditions strongly a?ect the properties of these compounds, it is especially important to choose an appropriate synthetic technique that produces a product with homogenous morphology, small size dispersion, and high thermal stability.



فهرست مطالب

Metal-Organic Frameworks for Chemical Reactions
Copyright
Contents
List of contributors
1 Metal-organic frameworks and their composites
	1.1 Introduction
	1.2 Metal-organic framework composites
		1.2.1 Processing of metal-organic framework composites
		1.2.2 Types of metal-organic framework composites
			1.2.2.1 Metal-organic framework–polymer composites
			1.2.2.2 Metal-organic framework–quantum dot composites
			1.2.2.3 Metal-organic framework–metal nanoparticle composites
			1.2.2.4 Metal-organic framework–graphene oxide composites
			1.2.2.5 Metal-organic framework–polyoxometalate composites
			1.2.2.6 Metal-organic framework–enzyme composites
			1.2.2.7 Metal-organic framework–cellulose composites
			1.2.2.8 Metal-organic framework–silica composites
			1.2.2.9 Metal-organic framework–activated carbon composites
			1.2.2.10 Metal-organic framework–aluminum composites
			1.2.2.11 Metal-organic framework–molecular species composites
			1.2.2.12 Metal-organic framework–hybrid composites
	1.3 Characterization of metal-organic framework composites
		1.3.1 X-ray diffraction analysis
		1.3.2 X-ray photoelectron spectroscopy
		1.3.3 Fourier-transform infrared spectroscopy
		1.3.4 Scanning electron microscopy analysis
	1.4 Conclusion
	References
2 Metal-organic framework for batteries and supercapacitors
	2.1 Introduction
	2.2 Metal-organic frameworks
	2.3 Metal-organic frameworks for batteries
		2.3.1 Lithium-ion batteries
		2.3.2 Sodium-ion batteries
		2.3.3 Li–O2 batteries
		2.3.4 Li–S batteries
	2.4 Metal-organic frameworks for supercapacitors
		2.4.1 Metallic oxides/sulfides for supercapacitors
		2.4.2 Carbon for supercapacitors
	2.5 Conclusion
	References
3 Titanium-based metal-organic frameworks for photocatalytic applications
	3.1 Introduction
		3.1.1 The Ti-chemistry
	3.2 Preparation of titanium-based metal-organic frameworks and the selection of precursors
		3.2.1 Direct synthesis
		3.2.2 Solvothermal synthesis
		3.2.3 Ultrasonic and microwave-assisted synthesis
		3.2.4 The method of coordination–covalent combination
		3.2.5 Method of postsynthetic cation exchange
		3.2.6 Vapor-assisted crystallization method
		3.2.7 Synthesis of titanium-based metal-organic framework composites
	3.3 The structure of titanium-based metal-organic frameworks
		3.3.1 Photocatalytic application of titanium-based metal-organic frameworks
	3.4 Photocatalytic oxidation reaction
		3.4.1 Titanium-based metal-organic framework composites
		3.4.2 Photocatalytic NO oxidation and antibacterial activity
		3.4.3 Photocatalytic CO2 reduction
		3.4.4 Photocatalytic H2 generation from water splitting
		3.4.5 Photocatalytic degradation of organic pollutants
		3.4.6 Photocatalytic polymerization
		3.4.7 Photocatalytic deoximation reaction
		3.4.8 Photocatalytic sensors
	3.5 Conclusion
	References
4 Electrochemical aspects of metal-organic frameworks
	4.1 Introduction
	4.2 Electrochemical synthesis of metal-organic frameworks
		4.2.1 Direct electrosynthesis of metal-organic frameworks
			4.2.1.1 Anodic dissolution
			4.2.1.2 Reductive deprotonation
		4.2.2 Indirect electrosynthesis of metal-organic frameworks
			4.2.2.1 Anchoring of a linker
			4.2.2.2 Galvanic displacement
			4.2.2.3 Electrophoretic deposition
			4.2.2.4 Self-templated synthesis from metal oxide/hydroxide nanostructures
	4.3 Electrochemical applications of metal-organic frameworks
		4.3.1 Battery applications of various metal-organic frameworks
			4.3.1.1 Metal-organic frameworks for Li-ion batteries
			4.3.1.2 Metal-organic frameworks for Li–S batteries and other batteries
		4.3.2 Supercapacitors applications of various metal-organic frameworks
		4.3.3 Electrocatalysis applications of various metal-organic frameworks
		4.3.4 Electrochemical sensing applications of various metal-organic frameworks
		4.3.5 Other electrochemical applications of metal-organic frameworks
	4.4 Conclusion
	Acknowledgment
	References
5 Permeable metal-organic frameworks for fuel (gas) storage applications
	5.1 Introduction
	5.2 Concept of porosity in fuel storage
	5.3 Permeable metal-organic frameworks for H2 storage application
	5.4 Permeable metal-organic frameworks for CH4 storage applications
	5.5 Permeable metal-organic frameworks for C2H2 storage applications
	5.6 Permeable metal-organic frameworks for CO2 storage applications
	5.7 Conclusion
	Acknowledgment
	References
6 Excessively paramagnetic metal organic framework nanocomposites
	6.1 Introduction
	6.2 Discussion and applications
	6.3 Conclusion
	References
7 Expanding energy prospects of metal-organic frameworks
	7.1 Introduction
	7.2 Metal-organic frameworks in Li-ion batteries
	7.3 Applications of metal-organic frameworks as electrode material for lithium-ion batteries
	7.4 Applications of high conductive metal-organic frameworks
	7.5 Utilization of metal-organic frameworks as electric double-layer capacitors (supercapacitors)
		7.5.1 Applications of optimizing the surface area
	7.6 Utilization of lithium–oxygen as separators
	7.7 Utilization of solid-state electrolytes
	7.8 Applications of electrode–electrolyte alliances
	7.9 Fuel cell applications
	7.10 Electrocatalytic applications
	7.11 Conclusion
	References
8 Metal-organic framework–based materials and renewable energy
	8.1 Introduction
	8.2 0D-metal-organic framework–based materials-nanoparticles
		8.2.1 Multishell 0D-metal-organic framework–based materials-nanoparticles
		8.2.2 Hollow 0D-metal-organic framework–based materials-nanoparticles
	8.3 1D-metal-organic framework–based materials-nanoparticles
		8.3.1 Nanotube 1D-metal-organic framework–based materials-nanoparticles
		8.3.2 Nanorod 1D-metal-organic framework–based materials-nanoparticles
		8.3.3 Nanowire 1D-metal-organic framework–based materials-nanoparticles
	8.4 2D-metal-organic framework–based materials-nanoparticles
		8.4.1 Nanosheet 2D-metal-organic framework–based materials-nanoparticles
		8.4.2 Holey 2D-metal-organic framework–based materials-nanoparticles
	8.5 3D-metal-organic framework–based materials-nanoparticles
		8.5.1 Array 3D-metal-organic framework–based materials-nanoparticles
		8.5.2 Hierarchical 3D-metal-organic framework–based materials-nanoparticles
		8.5.3 Superstructured 3D-metal-organic framework–based materials-nanoparticles
	8.6 Conclusion
	Acknowledgments
	References
9 Applications of metal-organic frameworks in analytical chemistry
	9.1 Introduction
	9.2 Desirable characteristics of MOFs for analytical chemistry applications
	9.3 Recent applications
		9.3.1 Recent applications in sample preparation
			9.3.1.1 Solid-phase extraction
			9.3.1.2 Dispersive solid-phase extraction
			9.3.1.3 Solid-phase microextraction
			9.3.1.4 Matrix solid-phase dispersion
			9.3.1.5 Stir bar sorptive extraction
		9.3.2 Recent applications in chromatography
			9.3.2.1 Gas chromatography
			9.3.2.2 Liquid chromatography
			9.3.2.3 Electrophoretic separations
		9.3.3 Recent applications in sensor development
			9.3.3.1 Electrochemical sensors
		9.3.4 Electroluminescent/optical sensors
	9.4 Conclusion and future remarks
	Acknowledgement
	References
10 Modified metal-organic frameworks as photocatalysts
	10.1 Introduction
	10.2 Structure, merits, and strategies
	10.3 Metal-organic framework modification
		10.3.1 Ligands and clusters
		10.3.2 Metals
		10.3.3 Semiconductors
		10.3.4 Dyes
		10.3.5 Composites/hybrids
	10.4 Applications
		10.4.1 Hydrogen production
		10.4.2 Water splitting
		10.4.3 Other applications
	10.5 Conclusion and outlook
	Acknowledgments
	Abbreviations
	References
11 The sensing applications of metal-organic frameworks and their basic features affecting the fate of detection
	11.1 Introduction
	11.2 Type of metal-organic frameworks
		11.2.1 MOF-5
		11.2.2 HKUST-1
		11.2.3 UiO
		11.2.4 ZIF-8 and ZIF-67
		11.2.5 MOF-76
		11.2.6 MIL-101
	11.3 Pore diameter
	11.4 Pore morphology
	11.5 Combination with different nanoparticles
	11.6 The sensing applications carried out with metal-organic frameworks
		11.6.1 Gas-sensing applications
		11.6.2 Metal ion sensing applications
		11.6.3 Hydrophobic molecule sensing applications
	11.7 Conclusion
	References
12 Thermomechanical and anticorrosion characteristics of metal-organic frameworks
	12.1 Introduction
	12.2 Design of metal-organic frameworks
		12.2.1 Key structures in metal-organic frameworks
		12.2.2 Dimensionality of metal-organic frameworks
		12.2.3 Methods for the construction of metal-organic framework structures
			12.2.3.1 Hydro(solvo)thermal method
			12.2.3.2 Microwave and ultrasonic methods
			12.2.3.3 Electrochemical production
			12.2.3.4 Diffusion method
			12.2.3.5 Mechanochemical synthesis
			12.2.3.6 Solvent evaporation and isothermal synthesis
	12.3 Stability of metal-organic frameworks
		12.3.1 Various aspects regarding the stability of metal-organic frameworks
			12.3.1.1 Thermal stability of metal-organic frameworks
			12.3.1.2 Mechanical stability
			12.3.1.3 Chemical stability
			12.3.1.4 Water stability
	12.4 Application
		12.4.1 Anticorrosion properties of metal-organic frameworks
			12.4.1.1 Metal-organic frameworks as a corrosion inhibitors
			12.4.1.2 Metal-organic framework–based thin films
			12.4.1.3 Metal-organic framework–based polymer composite coatings
				12.4.1.3.1 Metal-organic framework–based anticorrosion polymer composite coatings
				12.4.1.3.2 Thermomechanical properties
	12.5 Conclusion
	References
13 Metal-organic frameworks: preparation and application in electrocatalytic CO2 reduction reaction
	13.1 Introduction
	13.2 Synthesis and properties of metal-organic frameworks
		13.2.1 Hydrothermal method
		13.2.2 Sonochemical method
		13.2.3 Atomic layer deposition
		13.2.4 Electrochemical method
		13.2.5 Other synthesis methods
	13.3 Electrocatalytic CO2 reduction reaction
	13.4 Conclusion
	Acknowledgment
	References
14 Metal-organic frameworks as diverse chemical applications
	14.1 Introduction
	14.2 Electrochemical applications
		14.2.1 Metal-organic frameworks for Li-ion batteries
	14.3 Metal-organic frameworks in supercapacitor applications
		14.3.1 CO2 fixation
	14.4 Wastewater treatment
		14.4.1 Microfiltration
		14.4.2 Ultrafiltration
		14.4.3 Nanofiltration and organic solvent nanofiltration
		14.4.4 Reverse osmosis and forward osmosis
	14.5 Drug delivery
		14.5.1 Fuel cells
	14.6 Conclusion
	References
15 Metal-organic frameworks as chemical reaction flask
	15.1 Introduction to metal-organic frameworks
	15.2 Versatility of metal-organic frameworks
	15.3 Metal-organic frameworks as chemical reaction flask
	15.4 Utility of metal-organic framework as chemical reaction flask
		15.4.1 Metal-organic framework as chemical reaction flask for the conversion of syngas to hydrocarbons
		15.4.2 Metal-organic framework as chemical reaction flask for CO2 hydrogenation
		15.4.3 Metal-organic framework as chemical reaction flask for CO2 cycloaddition
		15.4.4 Metal-organic framework as chemical reaction flask for methane conversion
		15.4.5 Metal-organic framework as chemical reaction flask for arene oxidative coupling using C–H/C–H activation
		15.4.6 Metal-organic framework as chemical reaction flask for cyanosilylation
		15.4.7 Metal-organic framework as chemical reaction flask for transesterification
		15.4.8 Metal-organic framework as chemical reaction flask for condensation reactions
		15.4.9 Metal-organic framework as chemical reaction flask for ring-opening reactions
		15.4.10 Metal-organic frameworks as chemical reaction flask for Friedel–Crafts reactions
		15.4.11 Metal-organic frameworks as chemical reaction flask for cycloaddition
		15.4.12 Metal-organic frameworks as chemical reaction flask for cross-coupling reactions
		15.4.13 Metal-organic frameworks as chemical reaction flasks for Grignard reactions
		15.4.14 Metal-organic frameworks as chemical reaction flasks for catalytic reactions
		15.4.15 Metal-organic frameworks as chemical reaction flasks for porphyrins
		15.4.16 Metal-organic frameworks’ utilization toward the growth of catalytic clusters or nanoparticles
		15.4.17 Metal-organic frameworks as chemical reaction flasks for C–N coupling reactions
		15.4.18 Metal-organic frameworks as chemical reaction flasks for self-assembled peptides at interfaces
		15.4.19 Metal-organic ionic frameworks as different class of metal-organic frameworks
	15.5 Conclusion
	Acknowledgment
	References
16 Unique attributes of metal-organic frameworks in drug delivery
	16.1 Introduction
	16.2 Synthesis of metal-organic frameworks
		16.2.1 Conventional synthesis methods
		16.2.2 Unconventional synthesis
	16.3 Aspiring features for metal-organic frameworks’ application in drug delivery: toxicological compatibility, stability, ...
	16.4 Surface modification of metal-organic frameworks
	16.5 Synthesis of nanoscale metal-organic frameworks
	16.6 Therapeutic efficacy of metal-organic frameworks
	16.7 How metal-organic frameworks can advance the present success of drug delivery?
	16.8 Drug release mechanisms of metal-organic frameworks
		16.8.1 Commercialized research on metal-organic framework–enabled drug delivery
	16.9 Conclusion and future directions
	References
17 Metal-organic frameworks and permeable natural polymers for reasonable carbon dioxide fixation
	17.1 Introduction
	17.2 Carbon capture technologies and storage
	17.3 Postcombustion capture
		17.3.1 Amine-based CO2 capture
		17.3.2 Aqueous ammonia-based absorption
		17.3.3 Membranes
		17.3.4 Precombustion capture
		17.3.5 Oxy-fuel combustion
	17.4 Metal-organic frameworks
		17.4.1 Rigid metal-organic frameworks
		17.4.2 Open metal sites
		17.4.3 Surface functionalized metal-organic frameworks
	17.5 Strategies of CO2 fixation
		17.5.1 Selective CO2 capture by the metal-organic frameworks constructed from flexible organic building blocks
		17.5.2 CO2 capture by flexible carboxyl pendants metal-organic framework
		17.5.3 Impregnating metal cations in anionic metal-organic framework CO2 capture
		17.5.4 CO2 capture by porous organic polymer impregnating flexible polymeric amine
	17.6 Evaluation of CO2 adsorbent materials
	17.7 Conclusion
	References
18 Nanomaterials derived from metal-organic frameworks for energy storage supercapacitor application
	18.1 Introduction
		18.1.1 Metal-organic frameworks
		18.1.2 Composites of metal-organic frameworks
		18.1.3 Derivatives of metal-organic frameworks
	18.2 Metal-organic framework–derived metal oxide and composites
		18.2.1 Porous Co3O4
		18.2.2 Hollow α-Fe2O3 microboxes
		18.2.3 Co3O4/NiO/Mn2O3
		18.2.4 NiO/carbon nanofiber
		18.2.5 Co3O4@carbon flower
		18.2.6 CC@Co3O4
		18.2.7 Co3O4/3D macroporous carbon sponge
	18.3 Metal-organic framework-derived bimetal oxide nanostructures
		18.3.1 Hollow spheres CuCo2O4
		18.3.2 Co-MOF@CoCr2O4 microplate
	18.4 Metal-organic framework–derived metal sulfide nanostructures
		18.4.1 Hollow CoS2 dodecahedrons
		18.4.2 Hollow-concave CoMoSx
		18.4.3 Metal-organic framework-derived metal sulfide (MnCo2S4/Co9S8) nanostructures
		18.4.4 MnO2@NiCo-LDH/CoS2
		18.4.5 NiCoZn-S nanosheets coupled NiCo2S4
	18.5 Metal-organic framework–derived carbon nanostructures
		18.5.1 Porous carbon
		18.5.2 Porous carbon polyhedrons
		18.5.3 Mesoporous carbon
	18.6 NiCo-MOF@PNTs
	18.7 Conclusion and future perspective
	Acknowledgment
	References
Index




نظرات کاربران