دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Anish Khan (editor), Francis Verpoort (editor), Abdullah M. Asiri (editor), Md Enamul Hoque (editor), Anwar L. Bilgrami (editor), Mohammad Azam (editor), Kadiyala Chandra Babu Naidu (editor) سری: ISBN (شابک) : 0128220996, 9780128220993 ناشر: Elsevier سال نشر: 2021 تعداد صفحات: 491 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چارچوبهای فلز-آلی برای واکنشهای شیمیایی: از تبدیلهای آلی تا کاربردهای انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
چارچوبهای فلز-آلی برای واکنشهای شیمیایی: از تبدیلهای آلی تا کاربردهای انرژی جدیدترین اطلاعات در مورد مواد MOFs را گرد هم میآورد که فناوریهای اخیر در زمینه ساخت و طراحی را پوشش میدهد. این کتاب جنبههای مختلف واکنشهای ذخیرهسازی انرژی و کاتالیزورها، از جمله تکنیکهای آمادهسازی، طراحی و شناسایی مواد و کاربردهای MOF را پوشش میدهد. این منبع جامع برای محققان و دانشآموزان پیشرفتهای که چارچوبهای فلزی-آلی را در دانشگاه و صنعت مطالعه میکنند، ایدهآل است.
چارچوبهای آلی فلزی (MOFs) پلیمرهای نانومتخلخلی هستند که از کانونهای فلزی معدنی تشکیل شدهاند که توسط لیگاندهای طبیعی به هم متصل شدهاند. این موجودات به دلیل خواص فیزیکی و شیمیایی استثنایی که آنها را در زمینه های مختلف از جمله پزشکی، انرژی و محیط زیست مفید می کند، به یک منطقه داغ تحقیقاتی تبدیل شده اند. از آنجایی که شرایط ترکیبی به شدت خواص این ترکیبات را تحت تأثیر قرار می دهد، انتخاب یک تکنیک مصنوعی مناسب که محصولی با مورفولوژی همگن، پراکندگی اندازه کوچک و پایداری حرارتی بالا تولید کند، اهمیت ویژه ای دارد.
Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications brings together the latest information on MOFs materials, covering recent technology in the field of manufacturing and design. The book covers different aspects of reactions from energy storage and catalysts, including preparation, design and characterization techniques of MOFs material and applications. This comprehensive resource is ideal for researchers and advanced students studying metal-organic frameworks in academia and industry.
Metal-organic frameworks (MOFs) are nanoporous polymers made up of inorganic metal focuses connected by natural ligands. These entities have become a hot area of research because of their exceptional physical and chemical properties that make them useful in di?erent ?elds, including medicine, energy and the environment. Since combination conditions strongly a?ect the properties of these compounds, it is especially important to choose an appropriate synthetic technique that produces a product with homogenous morphology, small size dispersion, and high thermal stability.
Metal-Organic Frameworks for Chemical Reactions Copyright Contents List of contributors 1 Metal-organic frameworks and their composites 1.1 Introduction 1.2 Metal-organic framework composites 1.2.1 Processing of metal-organic framework composites 1.2.2 Types of metal-organic framework composites 1.2.2.1 Metal-organic framework–polymer composites 1.2.2.2 Metal-organic framework–quantum dot composites 1.2.2.3 Metal-organic framework–metal nanoparticle composites 1.2.2.4 Metal-organic framework–graphene oxide composites 1.2.2.5 Metal-organic framework–polyoxometalate composites 1.2.2.6 Metal-organic framework–enzyme composites 1.2.2.7 Metal-organic framework–cellulose composites 1.2.2.8 Metal-organic framework–silica composites 1.2.2.9 Metal-organic framework–activated carbon composites 1.2.2.10 Metal-organic framework–aluminum composites 1.2.2.11 Metal-organic framework–molecular species composites 1.2.2.12 Metal-organic framework–hybrid composites 1.3 Characterization of metal-organic framework composites 1.3.1 X-ray diffraction analysis 1.3.2 X-ray photoelectron spectroscopy 1.3.3 Fourier-transform infrared spectroscopy 1.3.4 Scanning electron microscopy analysis 1.4 Conclusion References 2 Metal-organic framework for batteries and supercapacitors 2.1 Introduction 2.2 Metal-organic frameworks 2.3 Metal-organic frameworks for batteries 2.3.1 Lithium-ion batteries 2.3.2 Sodium-ion batteries 2.3.3 Li–O2 batteries 2.3.4 Li–S batteries 2.4 Metal-organic frameworks for supercapacitors 2.4.1 Metallic oxides/sulfides for supercapacitors 2.4.2 Carbon for supercapacitors 2.5 Conclusion References 3 Titanium-based metal-organic frameworks for photocatalytic applications 3.1 Introduction 3.1.1 The Ti-chemistry 3.2 Preparation of titanium-based metal-organic frameworks and the selection of precursors 3.2.1 Direct synthesis 3.2.2 Solvothermal synthesis 3.2.3 Ultrasonic and microwave-assisted synthesis 3.2.4 The method of coordination–covalent combination 3.2.5 Method of postsynthetic cation exchange 3.2.6 Vapor-assisted crystallization method 3.2.7 Synthesis of titanium-based metal-organic framework composites 3.3 The structure of titanium-based metal-organic frameworks 3.3.1 Photocatalytic application of titanium-based metal-organic frameworks 3.4 Photocatalytic oxidation reaction 3.4.1 Titanium-based metal-organic framework composites 3.4.2 Photocatalytic NO oxidation and antibacterial activity 3.4.3 Photocatalytic CO2 reduction 3.4.4 Photocatalytic H2 generation from water splitting 3.4.5 Photocatalytic degradation of organic pollutants 3.4.6 Photocatalytic polymerization 3.4.7 Photocatalytic deoximation reaction 3.4.8 Photocatalytic sensors 3.5 Conclusion References 4 Electrochemical aspects of metal-organic frameworks 4.1 Introduction 4.2 Electrochemical synthesis of metal-organic frameworks 4.2.1 Direct electrosynthesis of metal-organic frameworks 4.2.1.1 Anodic dissolution 4.2.1.2 Reductive deprotonation 4.2.2 Indirect electrosynthesis of metal-organic frameworks 4.2.2.1 Anchoring of a linker 4.2.2.2 Galvanic displacement 4.2.2.3 Electrophoretic deposition 4.2.2.4 Self-templated synthesis from metal oxide/hydroxide nanostructures 4.3 Electrochemical applications of metal-organic frameworks 4.3.1 Battery applications of various metal-organic frameworks 4.3.1.1 Metal-organic frameworks for Li-ion batteries 4.3.1.2 Metal-organic frameworks for Li–S batteries and other batteries 4.3.2 Supercapacitors applications of various metal-organic frameworks 4.3.3 Electrocatalysis applications of various metal-organic frameworks 4.3.4 Electrochemical sensing applications of various metal-organic frameworks 4.3.5 Other electrochemical applications of metal-organic frameworks 4.4 Conclusion Acknowledgment References 5 Permeable metal-organic frameworks for fuel (gas) storage applications 5.1 Introduction 5.2 Concept of porosity in fuel storage 5.3 Permeable metal-organic frameworks for H2 storage application 5.4 Permeable metal-organic frameworks for CH4 storage applications 5.5 Permeable metal-organic frameworks for C2H2 storage applications 5.6 Permeable metal-organic frameworks for CO2 storage applications 5.7 Conclusion Acknowledgment References 6 Excessively paramagnetic metal organic framework nanocomposites 6.1 Introduction 6.2 Discussion and applications 6.3 Conclusion References 7 Expanding energy prospects of metal-organic frameworks 7.1 Introduction 7.2 Metal-organic frameworks in Li-ion batteries 7.3 Applications of metal-organic frameworks as electrode material for lithium-ion batteries 7.4 Applications of high conductive metal-organic frameworks 7.5 Utilization of metal-organic frameworks as electric double-layer capacitors (supercapacitors) 7.5.1 Applications of optimizing the surface area 7.6 Utilization of lithium–oxygen as separators 7.7 Utilization of solid-state electrolytes 7.8 Applications of electrode–electrolyte alliances 7.9 Fuel cell applications 7.10 Electrocatalytic applications 7.11 Conclusion References 8 Metal-organic framework–based materials and renewable energy 8.1 Introduction 8.2 0D-metal-organic framework–based materials-nanoparticles 8.2.1 Multishell 0D-metal-organic framework–based materials-nanoparticles 8.2.2 Hollow 0D-metal-organic framework–based materials-nanoparticles 8.3 1D-metal-organic framework–based materials-nanoparticles 8.3.1 Nanotube 1D-metal-organic framework–based materials-nanoparticles 8.3.2 Nanorod 1D-metal-organic framework–based materials-nanoparticles 8.3.3 Nanowire 1D-metal-organic framework–based materials-nanoparticles 8.4 2D-metal-organic framework–based materials-nanoparticles 8.4.1 Nanosheet 2D-metal-organic framework–based materials-nanoparticles 8.4.2 Holey 2D-metal-organic framework–based materials-nanoparticles 8.5 3D-metal-organic framework–based materials-nanoparticles 8.5.1 Array 3D-metal-organic framework–based materials-nanoparticles 8.5.2 Hierarchical 3D-metal-organic framework–based materials-nanoparticles 8.5.3 Superstructured 3D-metal-organic framework–based materials-nanoparticles 8.6 Conclusion Acknowledgments References 9 Applications of metal-organic frameworks in analytical chemistry 9.1 Introduction 9.2 Desirable characteristics of MOFs for analytical chemistry applications 9.3 Recent applications 9.3.1 Recent applications in sample preparation 9.3.1.1 Solid-phase extraction 9.3.1.2 Dispersive solid-phase extraction 9.3.1.3 Solid-phase microextraction 9.3.1.4 Matrix solid-phase dispersion 9.3.1.5 Stir bar sorptive extraction 9.3.2 Recent applications in chromatography 9.3.2.1 Gas chromatography 9.3.2.2 Liquid chromatography 9.3.2.3 Electrophoretic separations 9.3.3 Recent applications in sensor development 9.3.3.1 Electrochemical sensors 9.3.4 Electroluminescent/optical sensors 9.4 Conclusion and future remarks Acknowledgement References 10 Modified metal-organic frameworks as photocatalysts 10.1 Introduction 10.2 Structure, merits, and strategies 10.3 Metal-organic framework modification 10.3.1 Ligands and clusters 10.3.2 Metals 10.3.3 Semiconductors 10.3.4 Dyes 10.3.5 Composites/hybrids 10.4 Applications 10.4.1 Hydrogen production 10.4.2 Water splitting 10.4.3 Other applications 10.5 Conclusion and outlook Acknowledgments Abbreviations References 11 The sensing applications of metal-organic frameworks and their basic features affecting the fate of detection 11.1 Introduction 11.2 Type of metal-organic frameworks 11.2.1 MOF-5 11.2.2 HKUST-1 11.2.3 UiO 11.2.4 ZIF-8 and ZIF-67 11.2.5 MOF-76 11.2.6 MIL-101 11.3 Pore diameter 11.4 Pore morphology 11.5 Combination with different nanoparticles 11.6 The sensing applications carried out with metal-organic frameworks 11.6.1 Gas-sensing applications 11.6.2 Metal ion sensing applications 11.6.3 Hydrophobic molecule sensing applications 11.7 Conclusion References 12 Thermomechanical and anticorrosion characteristics of metal-organic frameworks 12.1 Introduction 12.2 Design of metal-organic frameworks 12.2.1 Key structures in metal-organic frameworks 12.2.2 Dimensionality of metal-organic frameworks 12.2.3 Methods for the construction of metal-organic framework structures 12.2.3.1 Hydro(solvo)thermal method 12.2.3.2 Microwave and ultrasonic methods 12.2.3.3 Electrochemical production 12.2.3.4 Diffusion method 12.2.3.5 Mechanochemical synthesis 12.2.3.6 Solvent evaporation and isothermal synthesis 12.3 Stability of metal-organic frameworks 12.3.1 Various aspects regarding the stability of metal-organic frameworks 12.3.1.1 Thermal stability of metal-organic frameworks 12.3.1.2 Mechanical stability 12.3.1.3 Chemical stability 12.3.1.4 Water stability 12.4 Application 12.4.1 Anticorrosion properties of metal-organic frameworks 12.4.1.1 Metal-organic frameworks as a corrosion inhibitors 12.4.1.2 Metal-organic framework–based thin films 12.4.1.3 Metal-organic framework–based polymer composite coatings 12.4.1.3.1 Metal-organic framework–based anticorrosion polymer composite coatings 12.4.1.3.2 Thermomechanical properties 12.5 Conclusion References 13 Metal-organic frameworks: preparation and application in electrocatalytic CO2 reduction reaction 13.1 Introduction 13.2 Synthesis and properties of metal-organic frameworks 13.2.1 Hydrothermal method 13.2.2 Sonochemical method 13.2.3 Atomic layer deposition 13.2.4 Electrochemical method 13.2.5 Other synthesis methods 13.3 Electrocatalytic CO2 reduction reaction 13.4 Conclusion Acknowledgment References 14 Metal-organic frameworks as diverse chemical applications 14.1 Introduction 14.2 Electrochemical applications 14.2.1 Metal-organic frameworks for Li-ion batteries 14.3 Metal-organic frameworks in supercapacitor applications 14.3.1 CO2 fixation 14.4 Wastewater treatment 14.4.1 Microfiltration 14.4.2 Ultrafiltration 14.4.3 Nanofiltration and organic solvent nanofiltration 14.4.4 Reverse osmosis and forward osmosis 14.5 Drug delivery 14.5.1 Fuel cells 14.6 Conclusion References 15 Metal-organic frameworks as chemical reaction flask 15.1 Introduction to metal-organic frameworks 15.2 Versatility of metal-organic frameworks 15.3 Metal-organic frameworks as chemical reaction flask 15.4 Utility of metal-organic framework as chemical reaction flask 15.4.1 Metal-organic framework as chemical reaction flask for the conversion of syngas to hydrocarbons 15.4.2 Metal-organic framework as chemical reaction flask for CO2 hydrogenation 15.4.3 Metal-organic framework as chemical reaction flask for CO2 cycloaddition 15.4.4 Metal-organic framework as chemical reaction flask for methane conversion 15.4.5 Metal-organic framework as chemical reaction flask for arene oxidative coupling using C–H/C–H activation 15.4.6 Metal-organic framework as chemical reaction flask for cyanosilylation 15.4.7 Metal-organic framework as chemical reaction flask for transesterification 15.4.8 Metal-organic framework as chemical reaction flask for condensation reactions 15.4.9 Metal-organic framework as chemical reaction flask for ring-opening reactions 15.4.10 Metal-organic frameworks as chemical reaction flask for Friedel–Crafts reactions 15.4.11 Metal-organic frameworks as chemical reaction flask for cycloaddition 15.4.12 Metal-organic frameworks as chemical reaction flask for cross-coupling reactions 15.4.13 Metal-organic frameworks as chemical reaction flasks for Grignard reactions 15.4.14 Metal-organic frameworks as chemical reaction flasks for catalytic reactions 15.4.15 Metal-organic frameworks as chemical reaction flasks for porphyrins 15.4.16 Metal-organic frameworks’ utilization toward the growth of catalytic clusters or nanoparticles 15.4.17 Metal-organic frameworks as chemical reaction flasks for C–N coupling reactions 15.4.18 Metal-organic frameworks as chemical reaction flasks for self-assembled peptides at interfaces 15.4.19 Metal-organic ionic frameworks as different class of metal-organic frameworks 15.5 Conclusion Acknowledgment References 16 Unique attributes of metal-organic frameworks in drug delivery 16.1 Introduction 16.2 Synthesis of metal-organic frameworks 16.2.1 Conventional synthesis methods 16.2.2 Unconventional synthesis 16.3 Aspiring features for metal-organic frameworks’ application in drug delivery: toxicological compatibility, stability, ... 16.4 Surface modification of metal-organic frameworks 16.5 Synthesis of nanoscale metal-organic frameworks 16.6 Therapeutic efficacy of metal-organic frameworks 16.7 How metal-organic frameworks can advance the present success of drug delivery? 16.8 Drug release mechanisms of metal-organic frameworks 16.8.1 Commercialized research on metal-organic framework–enabled drug delivery 16.9 Conclusion and future directions References 17 Metal-organic frameworks and permeable natural polymers for reasonable carbon dioxide fixation 17.1 Introduction 17.2 Carbon capture technologies and storage 17.3 Postcombustion capture 17.3.1 Amine-based CO2 capture 17.3.2 Aqueous ammonia-based absorption 17.3.3 Membranes 17.3.4 Precombustion capture 17.3.5 Oxy-fuel combustion 17.4 Metal-organic frameworks 17.4.1 Rigid metal-organic frameworks 17.4.2 Open metal sites 17.4.3 Surface functionalized metal-organic frameworks 17.5 Strategies of CO2 fixation 17.5.1 Selective CO2 capture by the metal-organic frameworks constructed from flexible organic building blocks 17.5.2 CO2 capture by flexible carboxyl pendants metal-organic framework 17.5.3 Impregnating metal cations in anionic metal-organic framework CO2 capture 17.5.4 CO2 capture by porous organic polymer impregnating flexible polymeric amine 17.6 Evaluation of CO2 adsorbent materials 17.7 Conclusion References 18 Nanomaterials derived from metal-organic frameworks for energy storage supercapacitor application 18.1 Introduction 18.1.1 Metal-organic frameworks 18.1.2 Composites of metal-organic frameworks 18.1.3 Derivatives of metal-organic frameworks 18.2 Metal-organic framework–derived metal oxide and composites 18.2.1 Porous Co3O4 18.2.2 Hollow α-Fe2O3 microboxes 18.2.3 Co3O4/NiO/Mn2O3 18.2.4 NiO/carbon nanofiber 18.2.5 Co3O4@carbon flower 18.2.6 CC@Co3O4 18.2.7 Co3O4/3D macroporous carbon sponge 18.3 Metal-organic framework-derived bimetal oxide nanostructures 18.3.1 Hollow spheres CuCo2O4 18.3.2 Co-MOF@CoCr2O4 microplate 18.4 Metal-organic framework–derived metal sulfide nanostructures 18.4.1 Hollow CoS2 dodecahedrons 18.4.2 Hollow-concave CoMoSx 18.4.3 Metal-organic framework-derived metal sulfide (MnCo2S4/Co9S8) nanostructures 18.4.4 MnO2@NiCo-LDH/CoS2 18.4.5 NiCoZn-S nanosheets coupled NiCo2S4 18.5 Metal-organic framework–derived carbon nanostructures 18.5.1 Porous carbon 18.5.2 Porous carbon polyhedrons 18.5.3 Mesoporous carbon 18.6 NiCo-MOF@PNTs 18.7 Conclusion and future perspective Acknowledgment References Index