ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Membrane-Based Technologies for Environmental Pollution Control

دانلود کتاب فناوری های مبتنی بر غشاء برای کنترل آلودگی محیطی

Membrane-Based Technologies for Environmental Pollution Control

مشخصات کتاب

Membrane-Based Technologies for Environmental Pollution Control

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128194553, 9780128194553 
ناشر: Butterworth-Heinemann 
سال نشر: 2020 
تعداد صفحات: 773 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 38 مگابایت 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Membrane-Based Technologies for Environmental Pollution Control به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فناوری های مبتنی بر غشاء برای کنترل آلودگی محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فناوری های مبتنی بر غشاء برای کنترل آلودگی محیطی



تکنولوژی های مبتنی بر غشاء برای کنترل آلودگی محیط زیست کاربرد این فناوری سبز را توضیح می دهد در حالی که رویکردی سیستماتیک برای استفاده دقیق از روش های مدل سازی ریاضی برای بهینه سازی طراحی سیستم و افزایش مقیاس ارائه می دهد. این کتاب پوشش عمیقی از فرآیندهای غشایی، مواد و ماژول ها، همراه با کاربرد بالقوه آنها در سیستم های مختلف کنترل آلودگی را ارائه می دهد. هر فصل یک رویکرد سیستماتیک برای توسعه مدل پویا و راه حل ارائه می دهد. با این مرجع، محققان و مسئولان طراحی سیستم‌های کنترل آلودگی منبعی را پیدا می‌کنند که می‌تواند تلاش خود را برای کاهش یا جلوگیری از ورود آلاینده‌ها به انواع رسانه‌های محیطی به حداکثر برساند.


توضیحاتی درمورد کتاب به خارجی

Membrane Based Technologiesfor Environmental Pollution Control explains the application of this green technology while offering a systematic approach for accurately utilizing mathematical modeling methods for optimizing system design and scale-up. The book provides in-depth coverage of membrane processes, materials and modules, along with their potential application in various pollution control systems. Each chapter provides a systematic approach for dynamic model development and solutions. With this reference, researchers and those responsible for the design of pollution control systems will find a source that can maximize their efforts to reduce or prevent pollutants from entering all types of environmental media.



فهرست مطالب

Cover
Membrane-Based Technologies for Environmental Pollution Control
Copyright
Dedication
Contents
Preface
Acknowledgments
Sec 1
1 Introduction to membrane materials, processes, and modules
	1.1 Introduction to membrane materials
		1.1.1 Introduction
		1.1.2 Biological membranes
		1.1.3 Synthetic polymeric membranes
		1.1.4 Metal, metal oxide, and ceramic membranes
		1.1.5 Glass membrane
		1.1.6 Carbon membrane
		1.1.7 Composite membrane
		1.1.8 Ion-exchange membrane
		1.1.9 Liquid membrane
		1.1.10 Catalytic membrane
		1.1.11 Preparation, modification, and characterization of membrane
			1.1.11.1 Preparation
			1.1.11.2 Modifications
			1.1.11.3 Characterization
	1.2 Introduction to membrane processes
		1.2.1 Introduction
		1.2.2 Pressure-driven membrane processes
			1.2.2.1 Microfiltration
			1.2.2.2 Ultrafiltration
			1.2.2.3 Nanofiltration
			1.2.2.4 Reverse osmosis
		1.2.3 Thermally driven membrane processes
			1.2.3.1 Pervaporation
			1.2.3.2 Membrane distillation
				1.2.3.2.1 Working principle of membrane distillation
				1.2.3.2.2 A solar-driven membrane distillation module
				1.2.3.2.3 Membrane distillation configurations
				1.2.3.2.4 Different configurations of membrane distillation processes
					1.2.3.2.4.1 Direct contact membrane distillation
				1.2.3.2.5 Air gap membrane distillation
				1.2.3.2.6 Sweeping gas membrane distillation
				1.2.3.2.7 Vacuum membrane distillation
				1.2.3.2.8 Relative merits and demerits of different membrane distillation configurations
				1.2.3.2.9 Advantages of membrane distillation processes
				1.2.3.2.10 Membrane distillation application
				1.2.3.2.11 Membrane distillation modules
				1.2.3.2.12 Operating variables affecting membrane distillation
				1.2.3.2.13 Necessary conditions for effective functioning of membrane distillation system
				1.2.3.2.14 Vacuum membrane distillation versus pervaporation
				1.2.3.2.15 Membrane distillation over conventional distillation
				1.2.3.2.16 Membrane distillation over pressure-driven membrane processes
				1.2.3.2.17 Low operating temperature and hydrostatic pressure
				1.2.3.2.18 Solute rejection
				1.2.3.2.19 Membrane selectivity
				1.2.3.2.20 Membrane fouling
				1.2.3.2.21 Limitations of membrane distillation
				1.2.3.2.22 Wetting of membrane
				1.2.3.2.23 Low separation of volatile components
				1.2.3.2.24 Osmotic membrane distillation and membrane distillation
				1.2.3.2.25 Membranes commonly used in membrane distillation
				1.2.3.2.26 Membrane distillation membrane modules
				1.2.3.2.27 Membranes used in membrane distillation and their methods of preparations
				1.2.3.2.28 Polyvinylidene fluoride
				1.2.3.2.29 Polytetrafluoroethylene
				1.2.3.2.30 Polypropylene
		1.2.4 Membrane characteristics
			1.2.4.1 Membrane pore size
			1.2.4.2 Membrane porosity and pore size distribution
			1.2.4.3 Membrane thickness and pore tortuosity
			1.2.4.4 High liquid entry pressure and membrane wetting
			1.2.4.5 Liquid–solid contact angle and liquid surface tension
			1.2.4.6 Membrane pore size
			1.2.4.7 Fouling and scaling
			1.2.4.8 Permeate quality and membrane wetting
		1.2.5 Concentration gradient-driven membrane processes
			1.2.5.1 Dialysis
		1.2.6 Electrical potential gradient-driven membrane processes
			1.2.6.1 Electrodialysis
	1.3 Introduction to membrane modules
		1.3.1 Introduction
		1.3.2 Tubular membrane modular
		1.3.3 Plate and frame membrane module
		1.3.4 Spiral wound membrane modules
		1.3.5 Hollow fiber membrane modules
		1.3.6 Flat sheet cross flow membrane module
		1.3.7 Stirred batch cell
	References
2 Introduction to membrane-based technology applications
	2.1 Introduction
		2.1.1 Application potential of microfiltration-based technology
		2.1.2 Application potential of ultrafiltration membrane-based technology
		2.1.3 Application potential of nanofiltration membrane-based technology
		2.1.4 Application potential of reverse osmosis membrane-based technology
		2.1.5 Application potential of forward osmosis-based technology
	2.2 Membrane technology in water treatment and water pollution control
		2.2.1 Treatment of municipal and industrial wastewater
	2.3 Membrane technology in desalination
	2.4 Membrane technology in air pollution control
	2.5 Membrane technology in hydrogen fuel production
	2.6 Membrane technology in biofuel production
	2.7 Membrane technology in green chemical production
	2.8 Membrane technology in production of fruit juice and cosmetics
	2.9 Membrane technology in dairy, food and beverages production
	2.10 Membrane technology in bioseparation
	2.11 Membrane technology in biomedical application
		2.11.1 Hemodialysis
		2.11.2 Artificial organs
		2.11.3 Artificial lung
		2.11.4 Drug delivery systems
		2.11.5 Immunoisolation of drug-producing cells
		2.11.6 Biomedical assay
	References
3 Introduction to modeling membrane separation processes
	3.1 Introduction
	3.2 Modeling microfiltration
	3.3 Modeling ultrafiltration
	3.4 Modeling reverse osmosis
	3.5 Modeling nanofiltration
		3.5.1 Donnan exclusion
		3.5.2 Dielectric exclusion
		3.5.3 Modeling approaches
		3.5.4 Continuum hydrodynamic model
		3.5.5 Irreversible thermodynamic model
		3.5.6 Electrokinetic space-charge model
		3.5.7 Donnan–Steric pore model
		3.5.8 Steric, electric, and dielectric exclusion model
		3.5.9 Flux of charged solute in steric, electric, and dielectric exclusion model
		3.5.10 Flux of uncharged solutes
	3.6 Modeling membrane distillation
		3.6.1 Modeling heat transfer in membrane distillation
		3.6.2 Temperature polarization
		3.6.3 Dufour effect
		3.6.4 Convective heat transfer through feed boundary layer
		3.6.5 Heat transfer across the membrane
		3.6.6 Heat transfer due to vapor permeation through the membrane
		3.6.7 Convective heat transfer through permeate side boundary layer
		3.6.8 Overall heat transfer coefficient (U) and temperature polarization coefficient
		3.6.9 Modeling interfacial temperatures
		3.6.10 Efficient heat and evaporation efficiency
		3.6.11 Modeling mass transfer in membrane distillation
		3.6.12 Mass transfer in the feed side
		3.6.13 Nonvolatile solute(s) with one volatile component
		3.6.14 System with two volatile components
		3.6.15 Mass transfer in the permeate side
		3.6.16 Permeate side resistance in air gap membrane distillation
		3.6.17 Permeate side resistance in direct contact membrane distillation
		3.6.18 Permeate side resistance in sweeping gas membrane distillation
		3.6.19 Permeate side resistance in vacuum membrane distillation
		3.6.20 Mass transfer through the membrane pores
		3.6.21 Knudsen flow or free molecule flow
		3.6.22 Flux in viscous or convective or bulk flow or Poiseuille flow
		3.6.23 Ordinary (continuum) or molecular diffusion
		3.6.24 The Knudsen–molecular diffusion transition
		3.6.25 The Knudsen–Poiseuille transition
		3.6.26 The Knudsen–Poiseuille transition for single species membrane distillation system
		3.6.27 The Knudsen–Poiseuille transition in direct contact membrane distillation and vacuum membrane distillation systems
		3.6.28 The Molecular–Poiseuille transition
		3.6.29 The Knudsen–Molecular–Poiseuille transition
		3.6.30 Determination of membrane characteristics for transport models
	References
4 Introduction to dynamic modeling of membrane-based technologies
	4.1 Introduction
	4.2 Modeling microfiltration-based technology
	4.3 Modeling ultrafiltration-based technology
	4.4 Modeling of nanofiltration-based water treatment technology
		4.4.1 Introduction
		4.4.2 Model development
			4.4.2.1 Assumptions
			4.4.2.2 Model equations
			4.4.2.3 Model parameters: physicochemical parameters
				4.4.2.3.1 Pore radius (rp) and effective membrane thickness (Δx)
				4.4.2.3.2 Determination of solute diffusivity (Ds,i)
				4.4.2.3.3 Determination of Peclet number (Pei)
				4.4.2.3.4 Computation procedure
			4.4.2.4 Error analysis and model performance
			4.4.2.5 Flux behavior during nanofiltration under varying operating pressure
			4.4.2.6 Separation of fluoride under varying pressure
			4.4.2.7 Effect of initial concentration on fluoride rejection and permeate flux
			4.4.2.8 Time profile of flux indicating effect of fouling
			4.4.2.9 Model prediction capability
	4.5 Modeling of reverse osmosis–based technology
		4.5.1 Model performance
	4.6 Modeling of integrated forward osmosis–nanofiltration process technology for industrial wastewater treatment
		4.6.1 Introduction
		4.6.2 Modeling forward osmosis–nanofiltration hybrid system: background and assumptions
		4.6.3 Transport through forward osmosis system
		4.6.4 Transport through nanofiltration system
		4.6.5 Model parameters
			4.6.5.1 Effective membrane charge density
			4.6.5.2 Reverse salt flux
		4.6.6 Model predictions against system performance under different operating conditions during forward osmosis
		4.6.7 Prediction capability of the nanofiltration model under the major operating conditions
	4.7 Modeling of forward osmosis–nanofiltration integrated process technology for treating contaminated groundwater
		4.7.1 Introduction
		4.7.2 Model of forward osmosis–nanofiltration integrated system
		4.7.3 Model assumptions
		4.7.4 Modeling transport of arsenic in forward osmosis process
		4.7.5 Transport of draw solute through nanofiltration membrane module
		4.7.6 Model parameters
			4.7.6.1 Peclet number (Pk)
			4.7.6.2 Mass transfer coefficient of the solute (K)
			4.7.6.3 Sherwood number, Reynolds number, and Schmidt number
			4.7.6.4 Convective hindered diffusivity (Dc,i), diffusive hindrance factor (Ad,i), and convective hindrance factor (Ac,i)
		4.7.7 Computational procedure
		4.7.8 Model performance
			4.7.8.1 Effects of draw solution of flux and rejection of arsenic in forward osmosis
			4.7.8.2 Effects of transmembrane pressure on arsenic rejection and water flux in forward osmosis
			4.7.8.3 Effects of cross-flow rate of feed on arsenic rejection and water flux in forward osmosis system
			4.7.8.4 Effects of applied pressure and draw solution concentration on reverse salt flux
			4.7.8.5 Draw solute recovery and pure water flux in downstream nanofiltration module
			4.7.8.6 Effects of cross-flow rate on pure water flux in nanofiltration system
			4.7.8.7 Overall model performance
	4.8 Modeling membrane-integrated hybrid process technology for converting waste to wealth
		4.8.1 Introduction
		4.8.2 Theory and model development
			4.8.2.1 Chemical and biological treatment processes
			4.8.2.2 Nanofiltration membrane separation
			4.8.2.3 Chemical and biological treatment scheme
			4.8.2.4 Membrane separation using flat sheet cross-flow nanofiltration module
		4.8.3 Model parameters
			4.8.3.1 Computation of pore radius (rp) and effective membrane thickness (Δx)
			4.8.3.2 Hindered diffusivity (Di,p)
		4.8.4 Computational procedure
		4.8.5 Model performance
			4.8.5.1 Chemical precipitation of struvite
			4.8.5.2 Biodegradation
			4.8.5.3 Separation of contaminants by membrane
	4.9 Modeling of membrane distillation–based technology
		4.9.1 Introduction
		4.9.2 Model development
		4.9.3 Computational procedure
		4.9.4 Modified flash vaporization membrane distillation model
		4.9.5 Performance of the modified flash vaporization model (flash vaporization membrane distillation)
			4.9.5.1 Effect of feed temperature on flux
			4.9.5.2 Effect of distillate velocity on flux
			4.9.5.3 Effect of distillate temperature on flux
			4.9.5.4 Variation of TPC with feed temperature in modified FVMD model
			4.9.5.5 Variation of vapor pressure polarization coefficient with feed temperature
			4.9.5.6 Computation of heat transfer coefficients
			4.9.5.7 Performance of the solar energy collector and the flash vaporization membrane distillation membrane module
				4.9.5.7.1 Energy efficiency (η) of the solar collector system
			4.9.5.8 Evaporation efficiency of the module
			4.9.5.9 Gained output ratio of the system
			4.9.5.10 Performance ratio
			4.9.5.11 Overall module performance
	4.10 Modeling membrane-integrated green technology for glutamic acid production
		4.10.1 Introduction
		4.10.2 Theory and model development
			4.10.2.1 Modeling microbial kinetics of continuous fermentation
			4.10.2.2 Modeling microfiltration
			4.10.2.3 Modeling nanofiltration
		4.10.3 Determination of physicochemical parameters
			4.10.3.1 Microbial growth associated constants
			4.10.3.2 Membrane resistances during microfiltration
			4.10.3.3 Peclet number
			4.10.3.4 Hindered diffusivity (Di)
			4.10.3.5 Hindrance factor for convection of ion i (Hi)
			4.10.3.6 Zeta potential of the membrane
			4.10.3.7 Effective membrane thickness (Δx) and pore radius (rp)
		4.10.4 Computational procedure
		4.10.5 Model performance: analysis of error
			4.10.5.1 Biomass growth during glutamic acid fermentation
			4.10.5.2 Substrate consumption
			4.10.5.3 Product formation during fermentation
			4.10.5.4 Two-stage membrane filtration during continuous fermentation
			4.10.5.5 Flux during nanofiltration under varying operating pressure: model versus system values
			4.10.5.6 Downstream glutamic acid purification through nanofiltration
			4.10.5.7 Cross-flow rate: effect on flux and rejection
			4.10.5.8 Overall model performance
	4.11 Modeling membrane-based green technology for lactic acid production for bioplastic
		4.11.1 Modeling biokinetic process
			4.11.1.1 Introduction
			4.11.1.2 Model development
			4.11.1.3 Model validation
			4.11.1.4 Determination of kinetic parameters
				4.11.1.4.1 Kinetic parameters of the bacteria
				4.11.1.4.2 Two-stage continuous system
			4.11.1.5 Overall model performance
		4.11.2 Modeling transport through nanofiltration membrane in downstream separation–purification of lactic (l+) acid
			4.11.2.1 Introduction
			4.11.2.2 Theory and model development
				4.11.2.2.1 Model assumptions
				4.11.2.2.2 Model equations
				4.11.2.2.3 Physicochemical parameters
				4.11.2.2.4 Hindrance factor for diffusion
				4.11.2.2.5 Hindrance factor for convection
				4.11.2.2.6 The diffusivity of the solutes
				4.11.2.2.7 Rejection
			4.11.2.3 Computational procedure
			4.11.2.4 Model performance
				4.11.2.4.1 Permeate flux and rejection of uncharged solutes
					4.11.2.4.1.1 Nanofiltration of sucrose solution
					4.11.2.4.1.2 Nanofiltration of lactic acid buffers
				4.11.2.4.2 Nanofiltration of fermentation broth
					4.11.2.4.2.1 Permeate flux and rejection of lactate
				4.11.2.4.3 Model performance
	4.12 Modeling membrane-integrated green technology to produce acetic acid from dairy waste in a multistage membrane-integra...
		4.12.1 Introduction
		4.12.2 Theoretical background of the model
		4.12.3 Model development
			4.12.3.1 Fermentation
			4.12.3.2 Microfiltration of fermentation broth
			4.12.3.3 Purification of product by nanofiltration
		4.12.4 Computational procedure
			4.12.4.1 Microbial growth–related parameters
			4.12.4.2 Substrate–product inhibition–limitation constants
			4.12.4.3 Determination of membrane resistances
			4.12.4.4 Calculation of diffusivities
			4.12.4.5 Steric partition coefficient and hindrance factor
			4.12.4.6 Computation of effective membrane thickness (Δx) and pore radius (rp)
			4.12.4.7 Calculation of membrane charge density
			4.12.4.8 Analysis of error
		4.12.5 Model performance
			4.12.5.1 Biomass growth
			4.12.5.2 Substrate consumption
			4.12.5.3 Product formation
			4.12.5.4 Lactic acid production in micro- and nanofiltration-integrated continuous system
			4.12.5.5 Constant permeate fluxes through microfiltration and nanofiltration membrane modules
			4.12.5.6 Downstream purification of acetic acid through nanofiltration
			4.12.5.7 Model prediction of flux behavior during nanofiltration under varying operating pressure
				4.12.5.7.1 Membrane fouling during continuous filtration run
					4.12.5.7.1.1 Overall model performance
	Nomenclature
	References
Sec 2
5 Introduction to air emissions reduction and prevention
	5.1 Introduction to air pollutants
	5.2 Major greenhouse gases, sources and effects
	5.3 Potentials of membrane-based technologies in remediation of air pollution
	5.4 Particulate pollutants and remediation
	5.5 Membranes in remediation of particulate pollution
		5.5.1 Ceramic membranes
		5.5.2 Ceramic membrane filter in glass industry
		5.5.3 New membranes in particulate removal
	References
6 Membrane-based abatement technologies for SOx, NOx, volatile organic compound, humidity
	6.1 Introduction
	6.2 Abatement of SOx pollution through desulfurization of flue gas
	6.3 Membrane-based technologies in controlling SOx–NOx pollution
		6.3.1 Membrane selective catalytic reduction
		6.3.2 Membrane-integrated hybrid gas-absorption technology
		6.3.3 Hollow fiber membrane in SO2 removal from flue gas
		6.3.4 Supported ionic liquid membranes in SO2 gas separation
	6.4 Membrane technology in volatile organic compounds control
	6.5 Membrane-based technology in dehumidification
	References
7 Membrane-based technology for carbon dioxide capture and sequestration
	7.1 Introduction
	7.2 Membranes and modules in CO2 separation from gases
	7.3 Membrane separation of CO2 from the flue gas of coal-fired thermal power plant
	7.4 Membrane-based separation of CO2 from blast furnace flue gas of iron and steel industries
	7.5 Membrane-based treatment of flue gas from blast furnace of steel industry
	References
8 Membrane-based technology for removal of metallic pollutants
	8.1 Introduction
	8.2 Microfiltration and ultrafiltration in heavy-metal separation
		8.2.1 Complexation-enhanced ultrafiltration and micellar-enhanced microfiltration
		8.2.2 Ultrafiltration by mixed matrix membrane
	8.3 Nanofiltration in heavy-metal separation
	8.4 Heavy-metal removal from industrial wastewater by reverse osmosis membrane
	8.5 Removal of heavy metals by forward osmosis membrane
	8.6 Heavy-metal separation by membrane-based electrodialysis
	References
Sec 3
9 Introduction to membrane processes in water treatment
	9.1 Introduction
	9.2 Microfiltration in removing water contaminants
	9.3 Ultrafiltration technology in water treatment
	9.4 Nanofiltration in water treatment
		9.4.1 Langelier saturation index
		9.4.2 Pretreatment needs of nanofiltration
	9.5 Reverse osmosis in water treatment
	9.6 Forward osmosis in water treatment
	9.7 Membrane-integrated hybrid processes in water treatment
	References
10 Membrane-based technology for groundwater treatment
	10.1 Introduction
	10.2 Contaminants and sources of groundwater pollution
	10.3 Conventional methods of purification of groundwater
		10.3.1 Chemical coagulation–precipitation
		10.3.2 Adsorption
		10.3.3 Ion exchange
		10.3.4 Electrocoagulation
	10.4 Ultrafiltration and microfiltration in groundwater treatment
	10.5 Membrane distillation in treating contaminated groundwater
		10.5.1 Introduction
		10.5.2 Solar-driven membrane distillation system for the production of safe drinking water from arsenic-contaminated ground...
			10.5.2.1 The controlling phenomena in membrane distillation
				10.5.2.1.1 Temperature polarization
				10.5.2.1.2 Concentration polarization
				10.5.2.1.3 Microporous membranes
				10.5.2.1.4 The system operation
	10.6 Nanofiltration in groundwater treatment
		10.6.1 Introduction
		10.6.2 A nanofiltration technology for arsenic removal
			10.6.2.1 Preoxidation unit
			10.6.2.2 Nano-filtration in flat sheet cross flow module
			10.6.2.3 Oxidant dose, arsenic rejection, and pure water flux in nanofiltration
			10.6.2.4 Cross flow effects: water flux and ion rejection
			10.6.2.5 Operation of the stabilization unit
			10.6.2.6 Arsenic stabilization under response surface optimized conditions
			10.6.2.7 Leaching tests on stabilized arsenic rejects (Ca–Fe–AsO4)
			10.6.2.8 Fourier transform infra-red analysis for stabilized precipitate
			10.6.2.9 Statistical analysis of response surface methodology-optimized stabilization
		10.6.3 Leaching and Fourier transform infra-red results of stabilized arsenic rejects (Ca–Fe–AsO4)
			10.6.3.1 Economic analysis and sustainability
			10.6.3.2 Production of safe and healthy potable water by nanofiltration technology
	10.7 Nanofiltration in treatment of fluoride-contaminated groundwater
		10.7.1 Introduction
		10.7.2 Nanofiltration plant in removal of fluoride from groundwater
			10.7.2.1 Fluoride stabilization under response surface optimized conditions
				10.7.2.1.1 Temperature and reaction kinetics of stabilized fluoride
				10.7.2.1.2 Fourier transform infra-red study of CaF2
				10.7.2.1.3 System performance
					Effects of pressure and cross flow rate on F, Cl, Na, Fe rejection, and water flux
					Effects of cross flow rate on solute rejection and water flux
				10.7.2.1.4 Trend in membrane fouling with progress of time
				10.7.2.1.5 Statistical results of the response surface methodology for stabilization study
				10.7.2.1.6 Effects of process temperature and reaction time on fluoride stabilization efficiency
				10.7.2.1.7 Cost of treatment and sustainable supply of safe drinking water
	Nomenclature
	References
11 Membrane-based technology for wastewater
	11.1 Introduction
	11.2 Microfiltration and ultrafiltration in wastewater treatment
	11.3 Nanofiltration in wastewater treatment
		11.3.1 Treatment of cyanide-bearing wastewater by nanofiltration
			11.3.1.1 The plant configuration
			11.3.1.2 Separation principle
			11.3.1.3 Plant operation and control of governing parameters
			11.3.1.4 Control of transmembrane pressure
			11.3.1.5 Cross-flow rate
			11.3.1.6 Effect of pH on the removal of cyanide
			11.3.1.7 Cost evaluation and economic viability of nanofiltration-based process in wastewater treatment
	11.4 Nanofiltration–forward osmosis integrated technology
		11.4.1 Nanofiltration–forward osmosis integrated closed-loop treatment technology for recovery and reuse of pharmaceutical ...
			11.4.1.1 Introduction
			11.4.1.2 Closed-loop water treatment technology
				11.4.1.2.1 Alternate technologies versus membrane technology in treating pharmaceutical wastewater
				11.4.1.2.2 New forward osmosis–nanofiltration integrated design for the closed-loop treatment
				11.4.1.2.3 Mass transfer principles in forward osmosis
			11.4.1.3 The system
			11.4.1.4 Operational control
				11.4.1.4.1 Draw solution concentration: water flux and chemical oxygen demand removal in forward osmosis
				11.4.1.4.2 Transmembrane pressure: water flux and chemical oxygen demand rejection in forward osmosis
				11.4.1.4.3 Applied pressure and draw solution concentration: reverse salt flux
				11.4.1.4.4 Hydraulic transmembrane pressure: draw solute recovery and pure water flux in downstream nanofiltration
				11.4.1.4.5 Salt removal and permeate flux in nanofiltration system: cross-flow effects
				11.4.1.4.6 Concentration polarization
				11.4.1.4.7 Scale-up and economic evaluation
			11.4.1.5 The overall cost (investment and operational)
			11.4.1.6 Sustainable technology
		11.4.2 A flux-enhancing forward osmosis–nanofiltration integrated treatment system for the tannery wastewater reclamation
			11.4.2.1 Introduction
			11.4.2.2 Membranes
			11.4.2.3 Selection of membrane and draw solution for forward osmosis
			11.4.2.4 Flow regime and unique aspects of the system
			11.4.2.5 The System Performance
			11.4.2.6 Effect of concentration of draw solution on water flux and rejection of major pollutants
			11.4.2.7 Economic evaluation
			11.4.2.8 Application of nanofiltration–forward osmosis technology in other wastewater treatments
	11.5 Membrane-based hybrid technologies for wastewater
		11.5.1 Introduction
		11.5.2 Hybrid technology integrating chemical process with membrane separation
			11.5.2.1 Chemical conversion
			11.5.2.2 Membrane separation
			11.5.2.3 Membranes and modules
			11.5.2.4 The hybrid treatment plant
			11.5.2.5 Optimization of chemical pretreatment process
				11.5.2.5.1 Response surface optimization and continuous mode treatment
				11.5.2.5.2 Results of response surface optimization using Design–Expert software
				11.5.2.5.3 Removal of ammonia through chemical precipitation as struvite by-product
				11.5.2.5.4 The pH effect in struvite precipitation
				11.5.2.5.5 Nanofiltration toward final polishing for recycling: removal of trace chemical contaminants
		11.5.3 New approach in waste treatment and recycling
		11.5.4 Membrane separation integrated with chemical and biological treatments
			11.5.4.1 Membranes
			11.5.4.2 Microbial agents
			11.5.4.3 Chemical treatment using Fenton’s reagents
			11.5.4.4 Biological degradation of phenol and ammonia
		11.5.5 Microfiltration and Nanofiltration of biologically treated coke wastewater
		11.5.6 Cost implications and sustainability
	Nomenclature
	List of symbols
	References
12 Membrane-based technology for drinking water
	12.1 Introduction
	12.2 Guideline values for safe drinking-water quality
	12.3 Drinking-water treatment options for removal of pathogens
		12.3.1 Disinfection: for removal of pathogenic contaminants virus, bacteria, protozoa
			12.3.1.1 Use of iodine
			12.3.1.2 Ozonation
			12.3.1.3 pH control
			12.3.1.4 Granular media
			12.3.1.5 UV radiation
			12.3.1.6 Chlorine-based disinfection
			12.3.1.7 Membrane filtration
	12.4 Treatment options for removal of chemical and other contaminants
		12.4.1 Use of corrosion inhibiter
	12.5 Low-pressure membrane filtration in drinking-water purification
	12.6 High-pressure membrane filtration in drinking-water purification
		12.6.1 Nanofiltration-based drinking-water treatment plants
			12.6.1.1 The Löhnen nanofiltration plant: a success story of nanofiltration in water treatment
		12.6.2 The first LEED Gold certified nanofiltration plant in the world
		12.6.3 Nanofiltration plant for purifying mine water with high sulfate
		12.6.4 Nanofiltration plant in purifying drinking water from pesticides
		12.6.5 Nanofiltration in removal of naturally occurring organic matter from surface water for drinking water
	12.7 Domestic-level drinking-water treatment by membrane
	12.8 Membrane-based community water treatment
	12.9 Awareness on the potential of membrane technology for high-purity drinking water
	References
13 Membrane-based technology for desalination
	13.1 Introduction
	13.2 Desalination technologies
	13.3 Membrane-based desalination: membranes and modules
		13.3.1 Desalination reverse osmosis modules
		13.3.2 Integrally skinned asymmetric membranes
		13.3.3 Surface modified membranes (integrally skinned)
		13.3.4 Thin-film composite reverse osmosis membrane
	13.4 Membrane-based desalination technologies
		13.4.1 Seawater reverse osmosis desalination technology of Gran Canaria Plant, Spain
		13.4.2 Brackish water desalination technology of Arab Potash Company
	13.5 Pretreatment in reverse osmosis desalination
	13.6 Membrane-based desalination as sustainable technology
	References
Sec 4
14 Introduction to membrane-based green technologies in pollution prevention
	14.1 Introduction
	14.2 Process intensification for sustainable technology
		14.2.1 Definition and introduction
			14.2.1.1 Equipment-based intensification
			14.2.1.2 Method-based intensification
		14.2.2 Innovative design for intensification of mass transfer: monolithic catalyst
		14.2.3 Designing reactor for process intensification
		14.2.4 Design of multifunctional equipment
		14.2.5 Designing closed-loop system of operation
		14.2.6 Application of green chemistry principles
		14.2.7 Green chemistry metrics
			14.2.7.1 Atom economy
			14.2.7.2 Carbon efficiency
			14.2.7.3 Effective mass yield (%)
			14.2.7.4 Reaction mass efficiency
			14.2.7.5 Environmental factor (E)
	14.3 Membrane technology: process intensification and environmental benefits
	References
15 Case studies on membrane-based green technology for organic acid manufacture
	15.1 Introduction
	15.2 Lactic acid manufacture by conventional process
	15.3 Membrane-based green technology in lactic acid production
		15.3.1 Introduction
		15.3.2 The system and operation
			15.3.2.1 Microorganism
			15.3.2.2 Fermentation media
			15.3.2.3 The module
			15.3.2.4 Fermentation
				15.3.2.4.1 Monitoring
			15.3.2.5 Downstream separation and purification
				15.3.2.5.1 Microfiltration at set flux
				15.3.2.5.2 Set flux runs through nanofiltration
				15.3.2.5.3 Continuous fermentation with microfiltration cell recycle and nanofiltration
	15.4 Response surface optimization of the fermentation process
		15.4.1 Introduction
			15.4.1.1 Materials and methods
				15.4.1.1.1 Microorganism
				15.4.1.1.2 Fermentative medium
			15.4.1.2 Experimental design
			15.4.1.3 Product analysis
			15.4.1.4 Optimization
			15.4.1.5 Effect of substrate concentrations
	15.5 Process intensification on membrane technology application in lactic acid production
		15.5.1 Introduction
			15.5.1.1 Process intensification
				15.5.1.1.1 System operation
			15.5.1.2 Measuring process intensification
			15.5.1.3 Comparative configurations of membrane technology plant and conventional plant
				15.5.1.3.1 Flexibility in the membrane-based plant design over conventional process
				15.5.1.3.2 Eco-friendly process design of the membrane-integrated system
				15.5.1.3.3 Energy efficiency
				15.5.1.3.4 Economics of production
					Capital cost
					Operating cost
				15.5.1.3.5 Improvement in production process and product quality
	References
16 Case studies for membrane-based green technology for amino acid manufacture
	16.1 Introduction
		16.1.1 Upstream production of glutamic acid
			16.1.1.1 Microbial strain
			16.1.1.2 Feedstock (carbon source)
			16.1.1.3 Fermentation medium: nutrient supplementation and optimization
			16.1.1.4 Microbial physiology and metabolic pathway of l-glutamic acid fermentation
	16.2 Conventional process of production of glutamic acid
		16.2.1 Production by immobilized microorganism
		16.2.2 Limitations of conventional production process
		16.2.3 Membrane processes
			16.2.3.1 Operation of membrane modules
			16.2.3.2 Fouling of membrane during filtration of fermentation broth
			16.2.3.3 Electrodialysis in glutamic acid separation
			16.2.3.4 Nanofiltration and reverse osmosis in glutamic acid separation
				16.2.3.4.1 Chemistry of nanofiltration membrane for separation of solute
				16.2.3.4.2 Effect of pH of the solution on the nanofiltration membrane performance
	16.3 Membrane-integrated green technology in glutamic acid production
		16.3.1 Introduction
		16.3.2 The system and operation
			16.3.2.1 Microorganism
			16.3.2.2 Membranes
			16.3.2.3 Fermentation medium
			16.3.2.4 The membrane-integrated fermentation system
			16.3.2.5 Fermentation
			16.3.2.6 Quality monitoring
			16.3.2.7 Microfiltration: transmembrane pressure, critical flux, and system run at set flux during fermentation
				16.3.2.7.1 Nanofiltration: transmembrane pressure and flux
				16.3.2.7.2 Effect of transmembrane pressure on glutamic acid and sugar rejection
			16.3.2.8 Continuous fermentation with cell recycles by microfiltration and nanofiltration
	16.4 Process intensification in glutamic acid manufacturing by membrane technology
		16.4.1 Introduction
		16.4.2 Measuring process intensification of membrane technology
			16.4.2.1 Plant configuration: new system removes many unit operations saving space and capital
			16.4.2.2 Flexibility in capacity and application
			16.4.2.3 Environmental benefits
			16.4.2.4 Saving on energy consumption
			16.4.2.5 Economics of production
			16.4.2.6 Potential of high purity product formation
		16.4.3 Production of amino acid by membrane-integrated green technology: a sustainable way
	References
17 Membrane technology to convert dairy waste into value-added products
	17.1 Introduction
	17.2 Conventional process technologies for manufacturing acetic acid
		17.2.1 Chemical synthesis approaches
			17.2.1.1 Cativa process technology
			17.2.1.2 Acetaldehyde oxidation
		17.2.2 Fermentative production of acetic acid
		17.2.3 Limitations of conventional production schemes
	17.3 Advances in acetic acid manufacturing technologies through membrane integration
		17.3.1 Operational aspects
		17.3.2 Microfiltration and ultrafiltration of fermentation broth: flux, pH, and cell bleeding
		17.3.3 Electrodialysis
		17.3.4 Nanofiltration and reverse osmosis of fermentation broth
		17.3.5 Pervaporation in acetic acid separation
		17.3.6 Membrane-integrated hybrid reactor
	17.4 Turning dairy waste into value-added acetic acid by membrane technology
		17.4.1 Introduction
		17.4.2 The multistage membrane-integrated hybrid bioreactor system
			17.4.2.1 The bioreactor
			17.4.2.2 The microorganism
			17.4.2.3 Collection of whey permeate by ultrafiltration of cheese whey
			17.4.2.4 The fermentative media
			17.4.2.5 Fermentation
			17.4.2.6 System monitoring
			17.4.2.7 Operating conditions
				17.4.2.7.1 Microfiltration for microbial cell separation
					Continuous fermentation with microfiltration and nanofiltration
			17.4.2.8 Nanofiltration under constant transmembrane pressure
	17.5 Process intensification in membrane-based technology of acetic acid production
		17.5.1 Introduction
			17.5.1.1 The system and operation
				17.5.1.1.1 Pretreatment of raw cheese whey
				17.5.1.1.2 Fermentation of microfiltered cheese whey
				17.5.1.1.3 Downstream purification
			17.5.1.2 Operating conditions
				17.5.1.2.1 Transmembrane: flux and rejection in the first stage of nanofiltration
				17.5.1.2.2 Value addition for enhanced profit margin in the sustainable technology
				17.5.1.2.3 Compactness of the new system
				17.5.1.2.4 Flexibility in plant capacity utilization
				17.5.1.2.5 Benefits to the environment
				17.5.1.2.6 Energy consumption in the membrane-based hybrid process vis-à-vis current technology
				17.5.1.2.7 Economics of production by membrane-based technology
	References
18 Membrane-based green technology in biofuel production
	18.1 Introduction to biofuel production
	18.2 Membrane technology in downstream separation–purification of biodiesel
	18.3 Ethanol as biofuel: conventional production and bottlenecks
	18.4 Membrane-based separation in bioethanol production
	18.5 A fully membrane-based green technology in bioethanol production
		18.5.1 The fermenter operation: culture, medium, and membrane
		18.5.2 The system and operation
		18.5.3 Product monitoring
		18.5.4 Substrate–product inhibition
		18.5.5 Production profile
		18.5.6 Ethanol purification and concentration using membrane distillation
	18.6 Process intensification and environmental benefits through membrane technology
		18.6.1 Space intensification
		18.6.2 Process safety and environmental benefits
		18.6.3 Energy intensification
		18.6.4 Cost benefits
		18.6.5 Sustainability through membrane technology
	References
19 A case study on membrane-based green technology in abatement of mercury pollution
	19.1 Introduction
	19.2 Membrane-based separation of mercury
		19.2.1 Emulsion liquid membrane separation of mercury
		19.2.2 Microfiltration and ultrafiltration in Hg recovery
	19.3 A case study on use of membrane-based technology toward zero discharge of mercury
		19.3.1 The membrane cell method
		19.3.2 A case of conversion from mercury to membrane cell technology
	References
Index
Back Cover




نظرات کاربران