دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Sixth global ed.] نویسندگان: Singiresu S. Rao, Philip Griffin سری: ISBN (شابک) : 9781292178615, 1292178612 ناشر: Pearson Education / Prentice Hall سال نشر: 2018 تعداد صفحات: [1295] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Mechanical vibrations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارتعاشات مکانیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
متن کامل دانلود شده در رایانه شما با کتابهای الکترونیکی میتوانید: جستجوی مفاهیم، کلمات و عبارات کلیدی ایجاد نکات برجسته و یادداشتبرداری در حین مطالعه یادداشتهای خود را با دوستان خود به اشتراک بگذارید کتابهای الکترونیکی در رایانه شما بارگیری میشوند و به صورت آفلاین از طریق قفسه کتاب قابل دسترسی هستند (به صورت رایگان موجود است. دانلود)، به صورت آنلاین و همچنین از طریق برنامه های iPad و Android در دسترس است. پس از خرید، دسترسی فوری به این کتاب الکترونیکی خواهید داشت. محدودیت زمانی محصولات کتاب های الکترونیکی تاریخ انقضا ندارند. تا زمانی که قفسه کتاب خود را نصب کرده باشید، همچنان به محصولات کتاب الکترونیکی دیجیتال خود دسترسی خواهید داشت. برای دوره های مهندسی ارتعاش. دانش ساختمان: مفاهیم ارتعاش در مهندسی با حفظ سبک نسخه های قبلی، این ویرایش ششم ارتعاشات مکانیکی به طور موثر نظریه، جنبه های محاسباتی و کاربردهای ارتعاش را ارائه می دهد و دانشجویان کارشناسی مهندسی را با موضوع مهندسی ارتعاش به ساده ترین شکل ممکن آشنا می کند. . ارتعاشات مکانیکی با تاکید بر تکنیک های کامپیوتری تجزیه و تحلیل، مبانی تحلیل ارتعاش را به طور کامل توضیح می دهد و بر اساس درک به دست آمده توسط دانشجویان در دوره های قبلی مکانیک در مقطع کارشناسی است. مفاهیم مرتبط مورد بحث قرار میگیرند و کاربردهای واقعی، مثالها، مشکلات و تصاویر مربوط به تحلیل ارتعاش، درک همه مفاهیم و مطالب را افزایش میدهند. در ویرایش ششم، چندین اضافات و تجدید نظر - از جمله مثالها، مشکلات و تصاویر جدید - با هدف ایجاد پوشش مفاهیم جامعتر و آسانتر برای پیگیری انجام شده است.
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed. For courses in vibration engineering. Building Knowledge: Concepts of Vibration in Engineering Retaining the style of previous editions, this Sixth Edition of Mechanical Vibrations effectively presents theory, computational aspects, and applications of vibration, introducing undergraduate engineering students to the subject of vibration engineering in as simple a manner as possible. Emphasising computer techniques of analysis, Mechanical Vibrations thoroughly explains the fundamentals of vibration analysis, building on the understanding achieved by students in previous undergraduate mechanics courses. Related concepts are discussed, and real-life applications, examples, problems, and illustrations related to vibration analysis enhance comprehension of all concepts and material. In the Sixth Edition, several additions and revisions have been made—including new examples, problems, and illustrations—with the goal of making coverage of concepts both more comprehensive and easier to follow.
Front Cover Equivalent Masses, Springs and Dampers Title Page Copyright Page Contents Preface Acknowledgments List of Symbols Chapter 1 Fundamentals of Vibration 1.1 Preliminary Remarks 1.2 Brief History of the Study of Vibration 1.2.1 Origins of the Study of Vibration 1.2.2 From Galileo to Rayleigh 1.2.3 Recent Contributions 1.3 Importance of the Study of Vibration 1.3.1 Conversion of Vibrations to Sound by the Human Ear 1.4 Basic Concepts of Vibration 1.4.1 Vibration 1.4.2 Elementary Parts of Vibrating Systems 1.4.3 Number of Degrees of Freedom 1.4.4 Discrete and Continuous Systems 1.5 Classification of Vibration 1.5.1 Free and Forced Vibration 1.5.2 Undamped and Damped Vibration 1.5.3 Linear and Nonlinear Vibration 1.5.4 Deterministic and Random Vibration 1.6 Vibration Analysis Procedure 1.7 Spring Elements 1.7.1 Nonlinear Springs 1.7.2 Linearization of a Nonlinear Spring 1.7.3 Spring Constants of Elastic Elements 1.7.4 Combination of Springs 1.7.5 Spring Constant Associated with the Restoring Force due to Gravity 1.8 Mass or Inertia Elements 1.8.1 Combination of Masses 1.9 Damping Elements 1.9.1 Construction of Viscous Dampers 1.9.2 Linearization of a Nonlinear Damper 1.9.3 Combination of Dampers 1.10 Harmonic Motion 1.10.1 Vectorial Representation of Harmonic Motion 1.10.2 Complex-Number Representation of Harmonic Motion 1.10.3 Complex Algebra 1.10.4 Operations on Harmonic Functions 1.10.5 Definitions and Terminology 1.11 Harmonic Analysis 1.11.1 Fourier Series Expansion 1.11.2 Complex Fourier Series 1.11.3 Frequency Spectrum 1.11.4 Time- and Frequency-Domain Representations 1.11.5 Even and Odd Functions 1.11.6 Half-Range Expansions 1.11.7 Numerical Computation of Coefficients 1.12 Examples Using MATLAB 1.13 Vibration Literature Chapter Summary References Review Questions Problems Design Projects Chapter 2 Free Vibration of Single-Degree-of-Freedom Systems 2.1 Introduction 2.2 Free Vibration of an Undamped Translational System 2.2.1 Equation of Motion Using Newton’s Second Law of Motion 2.2.2 Equation of Motion Using Other Methods 2.2.3 Equation of Motion of a Spring-Mass System in Vertical Position 2.2.4 Solution 2.2.5 Harmonic Motion 2.3 Free Vibration of an Undamped Torsional System 2.3.1 Equation of Motion 2.3.2 Solution 2.4 Response of First-Order Systems and Time Constant 2.5 Rayleigh’s Energy Method 2.6 Free Vibration with Viscous Damping 2.6.1 Equation of Motion 2.6.2 Solution 2.6.3 Logarithmic Decrement 2.6.4 Energy Dissipated in Viscous Damping 2.6.5 Torsional Systems with Viscous Damping 2.7 Graphical Representation of Characteristic Roots and Corresponding Solution 2.7.1 Roots of the Characteristic Equation 2.7.2 Graphical Representation of Roots and Corresponding Solutions 2.8 Parameter Variations and Root Locus Representations 2.8.1 Interpretations of ωn, ωd, ζ, and τ in the s-plane 2.8.2 Root Locus and Parameter Variations 2.9 Free Vibration with Coulomb Damping 2.9.1 Equation of Motion 2.9.2 Solution 2.9.3 Torsional Systems with Coulomb Damping 2.10 Free Vibration with Hysteretic Damping 2.11 Stability of Systems 2.12 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 3 Harmonically Excited Vibration 3.1 Introduction 3.2 Equation of Motion 3.3 Response of an Undamped System Under Harmonic Force 3.3.1 Total Response 3.3.2 Beating Phenomenon 3.4 Response of a Damped System Under Harmonic Force 3.4.1 Total Response 3.4.2 Quality Factor and Bandwidth 3.5 Response of a Damped System Under F(t) = F0eiwt 3.6 Response of a Damped System Under the Harmonic Motion of the Base 3.6.1 Force Transmitted 3.6.2 Relative Motion 3.7 Response of a Damped System Under Rotating Unbalance 3.8 Forced Vibration with Coulomb Damping 3.9 Forced Vibration with Hysteresis Damping 3.10 Forced Motion with Other Types of Damping 3.11 Self-Excitation and Stability Analysis 3.11.1 Dynamic Stability Analysis 3.11.2 Dynamic Instability Caused by Fluid Flow 3.12 Transfer-Function Approach 3.13 Solutions Using Laplace Transforms 3.14 Frequency Transfer Functions 3.14.1 Relation between the General Transfer Function T(s) and the Frequency Transfer Function T (iw) 3.14.2 Representation of Frequency-Response Characteristics 3.15 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 4 Vibration Under General Forcing Conditions 4.1 Introduction 4.2 Response Under a General Periodic Force 4.2.1 First-Order Systems 4.2.2 Second-Order Systems 4.3 Response Under a Periodic Force of Irregular Form 4.4 Response Under a Nonperiodic Force 4.5 Convolution Integral 4.5.1 Response to an Impulse 4.5.2 Response to a General Forcing Condition 4.5.3 Response to Base Excitation 4.6 Response Spectrum 4.6.1 Response Spectrum for Base Excitation 4.6.2 Earthquake Response Spectra 4.6.3 Design Under a Shock Environment 4.7 Laplace Transforms 4.7.1 Transient and Steady-State Responses 4.7.2 Response of First-Order Systems 4.7.3 Response of Second-Order Systems 4.7.4 Response to Step Force 4.7.5 Analysis of the Step Response 4.7.6 Description of Transient Response 4.8 Numerical Methods 4.8.1 Runge-Kutta Methods 4.9 Response to Irregular Forcing Conditions Using Numerical Methods 4.10 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 5 Two-Degree-of-Freedom Systems 5.1 Introduction 5.2 Equations of Motion for Forced Vibration 5.3 Free-Vibration Analysis of an Undamped System 5.4 Torsional System 5.5 Coordinate Coupling and Principal Coordinates 5.6 Forced-Vibration Analysis 5.7 Semidefinite Systems 5.8 Self-Excitation and Stability Analysis 5.9 Transfer-Function Approach 5.10 Solutions Using Laplace Transform 5.11 Solutions Using Frequency Transfer Functions 5.12 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 6 Multidegree-of-Freedom Systems 6.1 Introduction 6.2 Modeling of Continuous Systems as Multidegree-of-Freedom Systems 6.3 Using Newton’s Second Law to Derive Equations of Motion 6.4 Influence Coefficients 6.4.1 Stiffness Influence Coefficients 6.4.2 Flexibility Influence Coefficients 6.4.3 Inertia Influence Coefficients 6.5 Potential and Kinetic Energy Expressions in Matrix Form 6.6 Generalized Coordinates and Generalized Forces 6.7 Using Lagrange’s Equations to Derive Equations of Motion 6.8 Equations of Motion of Undamped Systems in Matrix Form 6.9 Eigenvalue Problem 6.10 Solution of the Eigenvalue Problem 6.10.1 Solution of the Characteristic (Polynomial) Equation 6.10.2 Orthogonality of Normal Modes 6.10.3 Repeated Eigenvalues 6.11 Expansion Theorem 6.12 Unrestrained Systems 6.13 Free Vibration of Undamped Systems 6.14 Forced Vibration of Undamped Systems Using Modal Analysis 6.15 Forced Vibration of Viscously Damped Systems 6.16 Self-Excitation and Stability Analysis 6.17 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 7 Determination of Natural Frequencies and Mode Shapes 7.1 Introduction 7.2 Dunkerley’s Formula 7.3 Rayleigh’s Method 7.3.1 Properties of Rayleigh’s Quotient 7.3.2 Computation of the Fundamental Natural Frequency 7.3.3 Fundamental Frequency of Beams and Shafts 7.4 Holzer’s Method 7.4.1 Torsional Systems 7.4.2 Spring-Mass Systems 7.5 Matrix Iteration Method 7.5.1 Convergence to the Highest Natural Frequency 7.5.2 Computation of Intermediate Natural Frequencies 7.6 Jacobi’s Method 7.7 Standard Eigenvalue Problem 7.7.1 Choleski Decomposition 7.7.2 Other Solution Methods 7.8 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 8 Continuous Systems 8.1 Introduction 8.2 Transverse Vibration of a String or Cable 8.2.1 Equation of Motion 8.2.2 Initial and Boundary Conditions 8.2.3 Free Vibration of a Uniform String 8.2.4 Free Vibration of a String with Both Ends Fixed 8.2.5 Traveling-Wave Solution 8.3 Longitudinal Vibration of a Bar or Rod 8.3.1 Equation of Motion and Solution 8.3.2 Orthogonality of Normal Functions 8.4 Torsional Vibration of a Shaft or Rod 8.5 Lateral Vibration of Beams 8.5.1 Equation of Motion 8.5.2 Initial Conditions 8.5.3 Free Vibration 8.5.4 Boundary Conditions 8.5.5 Orthogonality of Normal Functions 8.5.6 Forced Vibration 8.5.7 Effect of Axial Force 8.5.8 Effects of Rotary Inertia and Shear Deformation 8.5.9 Beams on Elastic Foundation 8.5.10 Other Effects 8.6 Vibration of Membranes 8.6.1 Equation of Motion 8.6.2 Initial and Boundary Conditions 8.7 Rayleigh’s Method 8.8 The Rayleigh-Ritz Method 8.9 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Project Chapter 9 Vibration Control 9.1 Introduction 9.2 Vibration Nomograph and Vibration Criteria 9.3 Reduction of Vibration at the Source 9.4 Balancing of Rotating Machines 9.4.1 Single-Plane Balancing 9.4.2 Two-Plane Balancing 9.5 Whirling of Rotating Shafts 9.5.1 Equations of Motion 9.5.2 Critical Speeds 9.5.3 Response of the System 9.5.4 Stability Analysis 9.6 Balancing of Reciprocating Engines 9.6.1 Unbalanced Forces Due to Fluctuations in Gas Pressure 9.6.2 Unbalanced Forces Due to Inertia of the Moving Parts 9.6.3 Balancing of Reciprocating Engines 9.7 Control of Vibration 9.8 Control of Natural Frequencies 9.9 Introduction of Damping 9.10 Vibration Isolation 9.10.1 Vibration Isolation System with Rigid Foundation 9.10.2 Vibration Isolation System with Base Motion 9.10.3 Vibration Isolation System with Flexible Foundation 9.10.4 Vibration Isolation System with Partially Flexible Foundation 9.10.5 Shock Isolation 9.10.6 Active Vibration Control 9.11 Vibration Absorbers 9.11.1 Undamped Dynamic Vibration Absorber 9.11.2 Damped Dynamic Vibration Absorber 9.12 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Project Chapter 10 Vibration Measurement and Applications 10.1 Introduction 10.2 Transducers 10.2.1 Variable-Resistance Transducers 10.2.2 Piezoelectric Transducers 10.2.3 Electrodynamic Transducers 10.2.4 Linear Variable Differential Transformer Transducer 10.3 Vibration Pickups 10.3.1 Vibrometer 10.3.2 Accelerometer 10.3.3 Velometer 10.3.4 Phase Distortion 10.4 Frequency-Measuring Instruments 10.5 Vibration Exciters 10.5.1 Mechanical Exciters 10.5.2 Electrodynamic Shaker 10.6 Signal Analysis 10.6.1 Spectrum Analyzers 10.6.2 Bandpass Filter 10.6.3 Constant-Percent Bandwidth and Constant-Bandwidth Analyzers 10.7 Dynamic Testing of Machines and Structures 10.7.1 Using Operational Deflection-Shape Measurements 10.7.2 Using Modal Testing 10.8 Experimental Modal Analysis 10.8.1 The Basic Idea 10.8.2 The Necessary Equipment 10.8.3 Digital Signal Processing 10.8.4 Analysis of Random Signals 10.8.5 Determination of Modal Data from Observed Peaks 10.8.6 Determination of Modal Data from Nyquist Plot 10.8.7 Measurement of Mode Shapes 10.9 Machine-Condition Monitoring and Diagnosis 10.9.1 Vibration Severity Criteria 10.9.2 Machine Maintenance Techniques 10.9.3 Machine-Condition Monitoring Techniques 10.9.4 Vibration Monitoring Techniques 10.9.5 Instrumentation Systems 10.9.6 Choice of Monitoring Parameter 10.10 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 11 Numerical Integration Methods in Vibration Analysis 11.1 Introduction 11.2 Finite Difference Method 11.3 Central Difference Method for Single-Degree-of-Freedom Systems 11.4 Runge-Kutta Method for Single-Degree-of-Freedom Systems 11.5 Central Difference Method for Multidegree-of-Freedom Systems 11.6 Finite Difference Method for Continuous Systems 11.6.1 Longitudinal Vibration of Bars 11.6.2 Transverse Vibration of Beams 11.7 Runge-Kutta Method for Multidegree-of-Freedom Systems 11.8 Houbolt Method 11.9 Wilson Method 11.10 Newmark Method 11.11 Examples Using MATLAB Chapter Summary References Review Questions Problems Chapter 12 Finite Element Method 12.1 Introduction 12.2 Equations of Motion of an Element 12.3 Mass Matrix, Stiffness Matrix, and Force Vector 12.3.1 Bar Element 12.3.2 Torsion Element 12.3.3 Beam Element 12.4 Transformation of Element Matrices and Vectors 12.5 Equations of Motion of the Complete System of Finite Elements 12.6 Incorporation of Boundary Conditions 12.7 Consistent- and Lumped-Mass Matrices 12.7.1 Lumped-Mass Matrix for a Bar Element 12.7.2 Lumped-Mass Matrix for a Beam Element 12.7.3 Lumped-Mass Versus Consistent-Mass Matrices 12.8 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 13 Nonlinear Vibration 13.1 Introduction 13.2 Examples of Nonlinear Vibration Problems 13.2.1 Simple Pendulum 13.2.2 Mechanical Chatter, Belt Friction System 13.2.3 Variable Mass System 13.3 Exact Methods 13.4 Approximate Analytical Methods 13.4.1 Basic Philosophy 13.4.2 Lindstedt’s Perturbation Method 13.4.3 Iterative Method 13.4.4 Ritz-Galerkin Method 13.5 Subharmonic and Superharmonic Oscillations 13.5.1 Subharmonic Oscillations 13.5.2 Superharmonic Oscillations 13.6 Systems with Time-Dependent Coefficients (Mathieu Equation) 13.7 Graphical Methods 13.7.1 Phase-Plane Representation 13.7.2 Phase Velocity 13.7.3 Method of Constructing Trajectories 13.7.4 Obtaining Time Solution from Phase-Plane Trajectories 13.8 Stability of Equilibrium States 13.8.1 Stability Analysis 13.8.2 Classification of Singular Points 13.9 Limit Cycles 13.10 Chaos 13.10.1 Functions with Stable Orbits 13.10.2 Functions with Unstable Orbits 13.10.3 Chaotic Behavior of Duffing’s Equation Without the Forcing Term 13.10.6 Chaotic Behavior of Duffing’s Equation with the Forcing Term 13.11 Numerical Methods 13.12 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Projects Chapter 14 Random Vibration 14.1 Introduction 14.2 Random Variables and Random Processes 14.3 Probability Distribution 14.4 Mean Value and Standard Deviation 14.5 Joint Probability Distribution of Several Random Variables 14.6 Correlation Functions of a Random Process 14.7 Stationary Random Process 14.8 Gaussian Random Process 14.9 Fourier Analysis 14.9.1 Fourier Series 14.9.2 Fourier Integral 14.10 Power Spectral Density 14.11 Wide-Band and Narrow-Band Processes 14.12 Response of a Sngle-Degree-of-Freedom System 14.12.1 Impulse-Response Approach 14.12.2 Frequency-Response Approach 14.12.3 Characteristics of the Response Function 14.13 Response Due to Stationary Random Excitations 14.13.1 Impulse-Response Approach 14.13.2 Frequency-Response Approach 14.14 Response of a Multidegree-of-Freedom System 14.15 Examples Using MATLAB Chapter Summary References Review Questions Problems Design Project Appendix A Mathematical Relations and Material Properties Appendix B Deflection of Beams and Plates Appendix C Matrices Appendix D Laplace Transform Appendix E Units Appendix F Introduction to MATLAB Answers to Selected Problems Index Back Cover