ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Measurement of the Transport Properties of Fluids.

دانلود کتاب اندازه گیری ویژگی های حمل و نقل سیالات.

Measurement of the Transport Properties of Fluids.

مشخصات کتاب

Measurement of the Transport Properties of Fluids.

دسته بندی: شیمی فیزیکی
ویرایش:  
نویسندگان: , ,   
سری: EXPERIMENTAL THERMODYNAMICS. Volume III 
ISBN (شابک) : 9780632029976 
ناشر: BLACKWELL SCIENTIFIC PUBLICATIONS 
سال نشر: 1991 
تعداد صفحات: 479 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 52 مگابایت 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Measurement of the Transport Properties of Fluids. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اندازه گیری ویژگی های حمل و نقل سیالات. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اندازه گیری ویژگی های حمل و نقل سیالات.

این جلد سومین کتاب از مجموعه کتاب‌های تنظیم شده و ویرایش شده است توسط کمیسیون IUPAC در ترمودینامیک و ترموشیمی. در این کتاب توجه بر اندازه گیری متمرکز شده است خواص مشخصه شل شدن سیال از حالت غیرتعادلی - خصوصیات انتقال. متن وضعیت فعلی توسعه را توصیف می کند تکنیک های اندازه گیری خواص انتقال سیالات و مخلوط آنها از جمله ویسکوزیته، هدایت حرارتی، انتشار ضرایب، عوامل انتشار حرارتی و تعرق حرارتی ضرایب این جلد شامل خلاصه ای ارزشمند از انواع مختلف است از تکنیک های تجربی قابل اجرا در طیف گسترده ای از حالت های ترمودینامیکی تاکید در کل بر روی دقت است و دقت نتیجه به دست آمده که خود بخش بزرگی از وظایف کمیسیون ترمودینامیک و ترموشیمی خود


توضیحاتی درمورد کتاب به خارجی

This volume is the third in a series of books coordinated and edited by the IUPAC Commission on Thermodynamics and Thermochemistry. In this book attention is concentrated upon the measurement of properties characteristic of the relaxation of a fluid from a non-equilibrium state – the transport properties. The text describes the current state of development of the techniques for measurement of the transport properties of fluids and their mixtures including viscosity, thermal conductivity, diffusion coefficients, thermal diffusion factors and thermal transpiration coefficients. The volume contains a valuable summary of a variety of experimental techniques applicable over a wide range of thermodynamic states. The emphasis throughout is on the precision and accuracy of the result obtained which is itself a large part of the remit of the Commission on Thermodynamics and Thermochemistry itself.



فهرست مطالب

List of Contributors 
Foreword 
Acknowledgments 
1 Introduction 
1.1 Motivation for the Volume 
2 Oscillating-Body Viscometers 
2.1 Theory of Oscillating-Body Viscometers 
2.1.1 Evolution Equations for Oscillating Bodies 
2.1.2 Connection between Theory and Experiment 
2.1.3 Oscillating Disks and Cylinders 
2.1.3.1 Free Disks 
2.1.3.2 Disk between Fixed Plates 
2.1.4 Oscillating Cups 
2.1.4.1 Large Cups 
2.1.4.2 Small Cups 
2.1.4.3 Intermediate Cups 
2.1.5 Oscillating Spheres 
2.1.6 Simultaneous Viscosity and Density Measurements 
2.1.7 Secondary Flow 
2.2 Instruments 
2.2.1 Oscillating Disk between Fixed Plates 
2.2.2 A Thick Disk or Cylinder 
2.2.3 Oscillating-Cup Instruments 
2.2.4 Other Oscillating-Body Instruments 
2.2.5 Measurement of the Decrement and Period 
3.2 Capillary Viscometers for Liquids 
3.2.1 Absolute Capillary Viscometer 
3.2.1.1 The Capillary 
3.2 .1.2 The Constant-Flow Injection System 
3.2.1.3 The Manometer 
3.2.2 Capillary Master Viscometers 
3.2.2.1 Working Equation 
3.2.2 .2 Potential Sources of Error 
3.2.2 .3 Measurement of the Flow Time 
3.2.3 Routine Capillary Viscometers 
3.2.4 Standard Liquids for Viscometer Calibration 
3.3 Capillary Viscometers for High Pressures 
3.3.1 General Features 
3.3.2 Deviations from the Ideal Model 
3.3.3 Calibration of the Capillary Constant 
3.3.4 Measurement of Flow Rate 
3.3.5 Measurement of Pressure Difference 
3.3.6 Other Considerations 
3.4 Other Transpiration Viscometers 
4 Vibrating Viscometers 
4.1 Vibrating-Wire Viscometer 
4.1.1 Theory of the Vibrating-Wire Viscometer 
4.1.2 The Working Equations 
4.1.3 Range of Validity of the Working Equations 
4.1.4 Applications of the Vibrating-Wire Viscometer 
4.1.5 Summary 
4.2 Torsional Crystal Viscometer 
4.2.1 Theory of the Instrument 
4.2.2 Torsional Crystal Transducers 
4.2.3 Data Acquisition Systems 
4.2.4 Precision and Accuracy 
5 Falling-Body Viscometers 
5.1 Falling-Sphere Viscometer 
5.1.1 Outline of the Theory 
5.1.2 Restrictions and Corrections 
5.1.2.1 Reynolds Number Limitation  
5.1.2.2 Correction for Wall Effects  
5.1.2.3 Application of a Deformable Body  
5.1.3 Measurement at Atmospheric Pressure  
5.1.3.1 Selection of Sphere Material
5.1.3.2 Applicable Viscosity Range 
5.1.3.3 Limitations on the Fall-Tube Dimensions 
5.1.3.4 Effect of Fall-Tube Ends 
5.1.3.5 Terminal Velocity 
5.1.3.6 Other Practical Considerations 
5.1.4 Techniques of Measurement 
5.1.5 Measurements at High Pressure 
5.1.5.1 Outline 
5.1.5.2 Optical System to Measure the Fall-Time 
5.1.5.3 Selection of the Ball 
5.2 Falling-Cylinder Viscometer 
5.2.1 Theory of the Instrument 
5.2.2 Calibration and Corrections 
5.2.3 Techniques 
5.2.3.1 The Falling Cylinder 
5.2.3.2 Determination of the Fall-Time 
5.2.3 Falling-Cylinder Viscometer for High Pressure 
6 Steady-State Methods for Thermal Conductivity 
6.1 Coaxial-Cylinder Method 
6.1.1 Principle of the Method 
6.1.2 Some Coaxial-Cylinder Cells 
6.1.3 Coaxial-Cylinder Cells with One Guard Cylinder 
6.1.4 Coaxial-Cylinder Cells with Two Guard Cylinders 
6.1.5 Determination of the Cell Constant 
6.1.6 Experimental Errors 
6.1.6.1 Corrections of the Heat Flow 
6.1.6 .2 Corrections to the Temperature Difference 
6.1.6.3 Corrections to the Cell Constant 
6.1.7 Summary 
6.2 Parallel-Plate Method 
6.2.1 Brief History of Early Relative Measurements 
6.2.2 Brief History of Early Absolute Measurements 
6.2.3 Liquids at Atmospheric Pressure 
6.2.3.1 Radiation Effects 
6.2.4 Measurements at Low Temperatures 
6.2.5 Measurements at High Temperatures and Pressures 
6.2.6 Corrosive Fluids at High Temperatures a nd Pressures 
6.2.7 Summary  
7 Transient Methods for Thermal Conductivity 
7.1 Fundamental Equations 
7.2 Transient Hot Wire 
7.2.1 The Ideal Model of the Method 
7.2.2 Corrections to the Ideal Model 
7.2.3 Instruments for Electrically Non-Conducting Liquids 
7.2.3.1 Historical Development 
7.2.3 2 Modern Thermal Conductivity Cells 
7.2.3.3 Data-Acquisition Systems 
7.2.4 Instruments for Electrically Conducting Fluids 
7.2.5 Accuracy of the Technique 
7.3 Interferometry near a Critical Point 
7.3.l The Principle of the Technique 
7.3.2 Application to Carbon Dioxide 
8 Light Scattering 
8.1 Photon-Correlation Spectroscopy 
8.1.1 Working Equations 
8.1.1.1 Integrated Scattering Cross-Section 
8.1.1.2 Estimating the Scattering Intensities 
8.1.1.3 Time Dependence of the Scattered Light 
8.1.2 Light-Scattering Instruments 
8.1.3 Photon Correlation 
8.1.4 Technique 
8.1.5 Representative Experimental Results 
8.1.6 Viscosity 
8.2 Forced Rayleigh Scattering 
8.2.1 Principle of the Method 
8.2.2 Deviations from Ideal Conditions 
8.2.2.1 Effect of the Cell Wall 
8.2.2.2 Effect of a Dye 
8.2.2.3 Gaussian Beam Intensity Distribution 
8.2.2.4 Effect of Grating Thickness 
8.2.2.5 Optimum Experimental Conditions 
8.2.3 Experimental Equipment 
8.2.4 Summary 
9 Diffusion Coefficients 
9.1 Diffusion in Liquids 
9.1.1 Diaphragm-Cell Method 
9.1.1.1 Basic Features 
9.1.1.2 Intradiffusion Experiments 
9.1.1.3 Interdiffusion Experiments 
9.1.1.4 Calibration Experiments 
9.1.1.5 Systems of Three Components 
9.1.1.6 Experimental Criteria 
9.1.1.7 Features of Cell Design 
9.1.1.8 High-Pressure Measurements 
9.1.1.9 Summary 
9.1.2 Capillary Diffusion Methods 
9.1.2.1 Open-Ended Capillary Method (OEC) 
9.1.2.2 Closed Capillary Method (CC) 
9.1.3 Conductimetric Diffusion Measurements 
9.1.3.1 Simplified Conductimetric Method 
9.1.4 Taylor Dispersion 
9.1.4.1 Theory 
9.1.4.2 Data Analysis and Parameter Estimation 
9.1.4.3 Density Measurements 
9.1.4.4 Experimental Arrangement 
9.1.4.5 Design Criteria 
9.1.4.6 Data Acquisition and Control  
9.1.4.7 Future Applications 
9.1.5 The NMR Spin-Echo Technique 
9.1.5.1 Basic Features 
9.1.5.2 Experimental Aspects 
9.1.5.3 Field-Gradient Determination 
9.1.6 Optical Methods 
9.1.6.1 Theoretical Considerations 
9.1.6.2 Apparatus for Rayleigh Fringes 
9.1.6.3 Apparatus for Gouy Fringes 
9.1.6.4 General Features of the Apparatus  
9.1.6.5 Experimental Procedure 
9.1.6.6 Analysis of Data 
9.1.6.7 Summary 
9.2 Diffusion in Gases 
9.2.1 The Closed-Tube Method 
9.2.1.1 Corrections  
9.2.1.2 An Instrument with Interferometric Detection  
9.2.1.3 An Instrument for Moderate Pressures 
9.2.2 The Two-Bulb Instrument 
9.2.2.1 Corrections and Precautions 
9.2.2.2 A Two-Bulb Instrument for Low Temperatures 
9.2.3 Other Methods 
9.2.3.1 The Cataphoretic Method  
9.2.3.2 Back-Diffusion 
9.2.3.3 Taylor Dispersion 
9.2.4 A Comparison of Methods 
10 Secondary Coefficients 
10.1 Thermodynamics of Thermal Diffusion 
10.2 Thermal Diffusion in Liquids 
10.2.1 Frames of Reference 
10.2.2 Experimental Methods 
10.2.2.1 The Soret Effect 
10.2.2.2 The Dufour Effect (Diffusion Thermoeffect) 
10.2.3 Experimental Data and Discussion 
10.3 Thermal Diffusion in Gases 
10.3.1 The Two-Bulb Method 
10.3.2 The Trennschaukel (Swing Separator) 
10.3.2.1 Approach to Equilibrium 
10.3.2.2 Back Diffusion in the Capillaries 
10.3.2.3 Disturbance owing to Pumping 
10.3.3 The Thermal-Diffusion Column 
10.3.4 The Dufour Effect 
10.4 Thermal Transpiration 
10.4.1 The Measurement of Thermal Transpiration 
10.4.2 Principal Error Sources 
10.4.2.1 Secondary Transpiration Effects 
10.4.2.2 The Influence of the History of the Surface 
10.4.2.3 Surface Diffusion 
10.4.2.4 The Effect of Accommodation 
10.4.3 Evaluation of Parameters from Measurements 
11 Low-Temperature Measurement 
11.1 Thermometry 
11.1.1 Resistive Thermometers 
11.1.2 3He Vapour Pressure Thermometer 
11.1.3 Paramagnetic Salt Thermometers 
11.2 General Instrumental Features 
11.2.1 Cell Dimensions and the Effects of Gravity 
11.2.2 Temperature Stability and Fixed Points 
11.2.3 Frequency Effects 
11.3 Thermal Conductivity 
11.4 The Thermal-Diffusion Ratio 
11.4.1 The Trennschaukel 
11.4.2 The Dielectric-Constant Method 
11.5 Diffusion Coefficient 
11.5.1 Light-Scattering Techniques 
11.5.2 NMR Methods 
11.5.3 Thermal-Conductivity Experiments 
11.5.4 Thermal-Relaxation Experiments 
11.6 Shear Viscosity 
11.6.1 Quasi-Stationary Methods 
11.6.1.1 Heat Conduction in Superfluid 4 He 
11.6.1.2 Friction between Concentric Cylinders 
11.6.1.3 Isothermal Flow through a Capillary 
11.6.2 Oscillatory Methods 
11.6.2.1 Second-Sound Attenuation 
11.6.2.2 Damping of an Oscillating Body 
11.6.2.3 Resonant Mechanical Audio Os cillators 
11.6.2.4 Vibrating-Wire Viscomet er 
11.6.2.5 Torsionally Oscillating Quartz Cylinder 
11.6.2.6 The Torsional Oscillator 
11.6.2.7 Quartz Crystal in a Shear Mode 
11.6.3 Comparison of the Data from Various Methods 
11.7 Conclusion 
12 High-Temperature Measurement 
12.1 Viscosity 
12.1.1 The Capillary Method 
12.1.2 Oscillating Viscometers 
12.1.3 Falling-B all Method 
12.2 Thermal Conductivity 
12.2.1 Transient Hot-Wire Method 
12.2.2 Concentric-Cylinder Method 
12.2.3 Optical Transient Methods 
12.2.4 Shock-Tube Method  
13 Reference Data 
13.1 Viscosity 
13.1.1 Viscosity of Liquids 
13.1.1.1 Absolute Standard of Viscosity at 20°C 
13.1.1.2 Temperature and Pressure Dependence 
13.1.1.3 Certified Reference Materials 
13.1.1.4 Other Remarks 
13.1.2 Viscosity of Gases 
13.1.2.1 Primary Standard at Atmospheric Press ure 
13.1.2.2 Temperature and Pressure Dependencies 
13.2 Thermal Conductivity 
13.2.1 Thermal Conductivity of Liquids 
13.2.1.1 Primary Reference Data 
13.2.1.2 Data for a Wider Range of Conditions 
13.2.2 Thermal Conductivity of Gases 
13.2.2.1 Reference Data at Atmospheric Pressure 
13.2.2.2 Data for a Wider Range of Conditions 
13.2.2.3 Other Remarks 
13.3 Diffusion Coefficient 
13.3.1 Reference Data for Liquids 
13.3.2 Reference Data for Gases 
Subject Index




نظرات کاربران