دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 1 نویسندگان: Philippe Dennery & André Krzywicki سری: Dover Books on Mathematics Series ISBN (شابک) : 0486691934 ناشر: Dover سال نشر: 1996 تعداد صفحات: 400 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 مگابایت
کلمات کلیدی مربوط به کتاب ریاضیات برای فیزیکدانان: ریاضیات، فیزیک
در صورت تبدیل فایل کتاب Mathematics for Physicists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات برای فیزیکدانان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یک مثال خوب از نحوه ارائه ریاضیات فیزیکی "کلاسیک". -- دانشمند آمریکایی این جلد که برای دانشجویان پیشرفته کارشناسی و کارشناسی ارشد نوشته شده است، پیشینه کاملی در زمینه ریاضیات مورد نیاز برای درک موضوعات پیشرفتهتر امروزی در فیزیک و مهندسی فراهم میکند. نویسندگان بدون به خطر انداختن دقت، مطالب نظری را به طور طولانی، بسیار خوانا و، تا جایی که ممکن است، به شیوهای شهودی توسعه میدهند. هر ایده انتزاعی با یک مثال بسیار ساده و عینی همراه است که به دانش آموز نشان می دهد که انتزاع صرفاً یک تعمیم از موارد خاص به راحتی قابل درک است. نماد استفاده شده همیشه مربوط به فیزیکدانان است. موضوعات تخصصی تر که به ساده ترین شکل ممکن مورد بررسی قرار می گیرند، با حروف کوچک ظاهر می شوند. بنابراین، حذف کامل آنها یا اختصاص دادن آنها به دانش آموز جاه طلب تر آسان است. از جمله مباحث مطرح شده می توان به نظریه توابع تحلیلی، فضاهای برداری خطی و عملگرهای خطی، بسط های متعامد (شامل سری های فوریه و تبدیل ها)، نظریه توزیع ها، معادلات دیفرانسیل معمولی و جزئی و توابع ویژه: جواب های سری، توابع گرین، مسائل ارزش ویژه، نمایش های یکپارچه مجموعه ای فوق العاده کامل از مواد ریاضی با کاربرد گسترده در فیزیک. . . برای خواننده بسیار ارزشمند است و قصد دارد دانش خود را در مورد نظریه ها و تکنیک های ریاضی زیربنایی فیزیک افزایش دهد. -- اپتیک کاربردی
A fine example of how to present 'classical' physical mathematics. -- American Scientist Written for advanced undergraduate and graduate students, this volume provides a thorough background in the mathematics needed to understand today's more advanced topics in physics and engineering. Without sacrificing rigor, the authors develop the theoretical material at length, in a highly readable, and, wherever possible, in an intuitive manner. Each abstract idea is accompanied by a very simple, concrete example, showing the student that the abstraction is merely a generalization from easily understood specific cases. The notation used is always that of physicists. The more specialized subjects, treated as simply as possible, appear in small print; thus, it is easy to omit them entirely or to assign them to the more ambitious student. Among the topics covered are the theory of analytic functions, linear vector spaces and linear operators, orthogonal expansions (including Fourier series and transforms), theory of distributions, ordinary and partial differential equations and special functions: series solutions, Green's functions, eigenvalue problems, integral representations. An outstandingly complete collection of mathematical material of wide application in physics . . . invaluable to the reader intent on increasing his knowledge of the mathematical theories and techniques underlying physics. -- Applied Optics
CHAPTER I THE THEORY OF ANALYTIC FUNCTIONS 1 1. Elementary Notions of Set Theory and Analysis, 1 1.1. Sets, 1 1.2 Some Notations of Set Theory, 1 1.3 Sets of Geometrical Points, 4 1.4 The Complex Plane, 5 1.5 Functions, 8 2. Functions of a Complex Argument, 11 3. The Differential Calculus of Functions of a Complex Variable, 12 4, The Cauchy-Riemann Conditions, 14 5. The Integral Calculus of Functions of a Complex Variable, 18 6. The Darboux Inequality, 21 7. Some Definitions, 21 8. Examples of Analytic Functions, 22 8.1 Polynomials, 22 8.2 Power Series, 23 8.3 Exponential and Related Functions, 23 9. Conformal Transformations, 25 9.1 Conformal Mapping, 25 9.2 Homographic Transformations, 27 9.3 Change of Integration Variable, 29 10. A Simple Application of Conformal Mapping, 30 11, The Cauchy Theorem, 33 12. Cauchy's Integral Representation, 37 13, The Derivatives of an Analytic function, 39 . 14, Local Behavior of an Analytic Function, 42 15. The Cauchy-Liouville Theorem, 42 16. The Theorem of Morera, 43 17. Manipulations with Series of Analytic Functions, 44 18. The Taylor Series, 45 19. Poisson's Integral Representation, 47 20. The Laurent Series, 48 21. Zeros and Isolated Singular Points of Analytic Functions, 50 21.1 Zeros, 50 21.2 Isolated Singular Points, 51 22. The Calculus of Residues, 53 22.1 Theorem of Residues, 53 22.2 Evaluation of Integrals, 56 23. The Principal Value of an Integral, 60 24. Multivalued Functions; Riemann Surfaces, 65 24.1 Preliminaries, 65 24.2 The Logarithmic Function and Its Riemann Surface, 66 24.3 The Functions f(z) = 2‘ and Their Riemann Surfaces, 70 24.4 The Function f(z) = (z^2- 1)^{1/2} and Hts Riemann Surface, 71 24.5 Concluding Remarks, 73 25. Example of the Evaluation of an Integral Involving a Multivalued Function, 74 26. Analytic Continuation, 76 27. The Schwarz Reflection Principle, 80 28. Dispersion Relations, 82 29. Meromorphic Functions, 94 29.1 The Mittag-Leffler Expansion, 84 29.2 A Theorem on Meromorphic Functions, 85 30. The Fundamental) Theorem of Algebra, 86 31. The Method of Steepest Descent; Asymptotic Expansions, 87 32. The Gamma Function, 94 33. Functions of Several Complex Variables. Analytic Completion, 98 CHAPTER 2 LINEAR VECTOR SPACES 103 1. Introduction, 103 2. Definition of a Linear Vector Space, 103 3. The Scalar Product, 106 . 4. Duel Vectors and the Cauchy-Schwarz Inequality, 106 5. Real and Complex Vector Spaces, 108 6. Metric Spaces, 109 7. Linear Operators, 111 8. The Algebra of Linear Operators, 113 9. Some Special Operators, 114 10. Linear Independence of Vectors, 118 11. Eigenvalues and Eigenvectors, 119 11.1 .Ordinary Eigenvectors, 119 11.2. Generalized Eigenvectors, 121 12. Orthogonalization Theorem, 124 13. N-Dimensional Vector Space, 126 13.1 Preliminaries, 126 13.2 Representations, 127 13.3 The Representation of a Linear Operator in an N-Dimensional Space, 128 14. Matrix Algebra, 129 15. The Inverse of a Matrix, 132 16. Change of Basis in an N-Dimensional Space, 134 17. Scalars and Tensors, 135 18. Orthogonal Bases and Some Special Matrices, 139 19, Introduction to Tensor Calculus, 143 19.1 Tensors in a Real Vector Space, 143 19.2 Tensor Functions, 148 19.3 Rotations, 150 19.4 Vector Analysis in a Three-dimensional Real Space, 1$2 20. Invariant Subspaces, 154 21. The Characteristic Equation and the Hamilton-Cayley Theorem, 158 22. The Decomposition of an N-Dimensional Space, 159 23. The Canonical Form of a Matrix, 162 24. Hermitian Matrices end Quadratic Forms, 170 24.1 Diagonalization of Hermitian Matrices, £70 24.2 Quadratic Forms, 175 24.3 Simultaneous Diagonalization of Two Hermitian Matrices, 177 CHAPTER III FUNCTION SPACE, ORTHOGONAL POLYNOMIALS, AND FOURIER ANALYSIS 179 1. Introduction, 179 2. Space Of Continuous Functions, 179 3. Metric Properties of the Space of Continuous Functions, 181 4. Elementary Introduction 1o the Lebesgue Integral, 184 5. The Riesz-Fischer Theorem, 189 6. Expansions of Orthogonal Functions, 191 7. Hilbert Space, 196 8. The Generalization of the Notion of a Basis, 197 9. The Weierstrass Theorem, 199 10. The Classical Orthogonal Polynomials, 203 10.1. Introductory Remarks, 203 10.2. The Generalized Rodriguez Formula, 203 10.3. Classification of the Classical Polynomials, 205 10.4. The Recurrence Relations, 208 10.5. Differential Equations Satisfied by the Classical Polynomials, 209 10.6. The Classical Polynomials, 211 11. Trigonometrical Series, 216 11.1 An Orthogonal Basis in L^2[−π,π], 216 11.2 The Convergence Problem, 217 12. The Fourier Transform, 223 13. An Introduction to the Theory of Generalized Functions, 225 13.1 Preliminaries, 225 13.2 Definition of a Generalized Function, 227 13.3 Handling Generalized Functions, 230 13.4 The Fourier Transform of a Generalized Function, 232 13.5 The Dirac δ Function, 235 14. Linear Operators In Infinite-Dimensional Spaces, 237 14.1 Introduction, 237 14.2 Compact Sets, 238 14.3 The Norm of a Linear Operator. Bounded Operators, 239 14.4 Sequences of Operators, 241 14.5 Completely Continuous Linear Operators, 241 14.6 The Fundamental Theorem on Completely Continuous Hermitian Operators, 244 14.7 A Convenient Notation, 249 14.8 Integral and Differential Operators, 251 CHAPTER IV DIFFERENTIAL EQUATIONS 257 Part I Ordinary Differential Equations, 257 1. Introduction, 257 2. Second-Order Differential Equations; Preliminaries, 260 3. The Transition from Linear Algebraic Systems to Linear Differential Equations—Difference Equations, 264 4. Generalized Green's Identity, 266 5. Green's Identity and Adjoint Boundary Conditions, 268 6. Second-Order Self-Adjoint Operators, 270 7. Green's Functions, 273 8. Properties of Green's Functions, 274 9. Construction and Uniqueness of Green's Functions, 277 10. Generalized Green's Function, 284 11. Second-Order Equations with In homogeneous Boundary Conditions, 285 12. The Sturm-Liouville Problem, 286 13. Eigenfunction Expansion of Green’s Functions, 268 14. Series Solutions of Linear Differential Equations of the Second Order that Depend on a Complex Variable, 291 14.1 Introduction, 291 14.2 Classification of Singularities, 291 14.3 Existence and Uniqueness of the Solution of a Differential Equation in the Neighborhood of an Ordinary Point, 292 14.4 Solution of a Differential Equation in a Neighborhood of a Regular Singular Point, 296 15. Solutions of Differential Equations Using the Method of Integral Representations, 301 15.1 General Theory, 301 15.2. Kernels of Integral Representations, 303 16. Fuchsian Equations with Three Regular Singular Points, 303 17. The Hyper-geometric Function, 306 17.1 Solutions of the Hyper-geometric Equation, 306 17.2 Integral Representations for the Hyper-geometric Function, 308 17.3 Some Further Relations Between. Thermometric Functions, 312 18. Functions Related to the Hyper-geometric Function, 314 18.1 The Jacobi Functions, 314 18.2 The Gegenbauer polynomials, 315 18.3 The Legendre Functions, 316 19, The Confluent Hyper-geometric Function, 316 20. Functions Related to the Confluent Hyper-geometric Function, 321 20.1 Parabolic Cylinder Functions; Hermite and Laguerre Polynomials, 321 20.2 The Error Function, 322 20.3 Bessel Functions, 322 ParII Introduction to Partial Differential Equations, 333 21. Preliminaries, 333 22. The Cauchy-Kovalevska Theorem, 333 23, Classification of Second-Order Quasi-linear Equations, 334 2A, Characteristics, 336 25. Boundary Conditions and Types of Equations, 341 25.1 Que-dimensional Wave Equation, 341 25.2 The One-dimensional Diffusion Equation, 344 25.3 The Two-dimensional Laplace Equation, 345 26. Multidimensional Fourier Transforms and & Function, 346 27. Green's Functions for Partial Differential Equations, 348 28. The Singular Part of the Green’s Function for Partial Differential Equations with Constant Coefficients, 351 28.1 The General Method, 351 24.2 An Elliptic Equation: Poisson's Equation, 351 , 28.3 A Parabolic Equation: The Diffusion Equation, 352 28.4 A Hyperbolic Equation: The Time-dependent Wave Equation, 3$3 29. Some Uniqueness Theorems, 355 29.1 Introduction, 355 29.2 The Dirichlet and Neumann Problems for the Three-dimensional La- place Equation, 355 29.3 The One-dimensional Diffusion Equation, 358 29.4 The Initial Value Problem for the Wave Equation, 360 30. The Method of Images, 362 31. The Method of Separation of Variables, 364 31.1 Introduction, 364 31,2 The Three-dimensional Laplace Equation in Spherical Coordinates, 36S 31.3 Associated Legendre Functions and Spherical Harmonics, 366 31.4 The General Factorized Solution of the Laplace Equation in Spherical Coordinates, 371 31.5 General Solution of Laplace's Equation with Dirichlet Boundary Conditions on a Sphere, 372 BIBLIOGRAPHY 378 INDEX 377