دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ریاضی ویرایش: 1 نویسندگان: Venkataraman Balakrishnan سری: ISBN (شابک) : 9783030396794, 9789386761118 ناشر: Springer سال نشر: 2020 تعداد صفحات: 790 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب فیزیک ریاضی _ کاربردها و مسائل: فیزیک ریاضی
در صورت تبدیل فایل کتاب Mathematical Physics _ Applications and Problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک ریاضی _ کاربردها و مسائل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف این کتاب درسی دانشجویان پیشرفته در مقطع کارشناسی و کارشناسی ارشد است که علاقه مند به یادگیری مفاهیم و ابزارهای اساسی ریاضی هستند که به طور گسترده در زمینه های مختلف فیزیک مورد استفاده قرار می گیرند. نویسنده از یک تجربه آموزشی گسترده استفاده می کند و متنی جامع و مستقل ارائه می دهد که توضیح می دهد که چگونه ریاضیات در موارد متعدد با فیزیک در هم آمیخته و بخشی جدایی ناپذیر از آن را تشکیل می دهد. به جای تأکید بر اثبات دقیق قضایا، از مثالهای خاص و کاربردهای فیزیکی (مانند دینامیک سیالات، الکترومغناطیس، مکانیک کوانتومی، و غیره) برای نشان دادن و تشریح تکنیکهای ریاضی مربوطه استفاده میشود. فصول اولیه کتاب انواع مختلف توابع، بردارها و تانسورها، حساب بردار و ماتریس ها را معرفی می کند. در فصلهای بعدی، مباحث پیشرفتهتری مانند فضاهای خطی، جبرهای عملگر، توابع ویژه، توزیعهای احتمال، فرآیندهای تصادفی، توابع تحلیلی، سریها و انتگرالهای فوریه، تبدیلهای لاپلاس، توابع گرین و معادلات انتگرال مورد بحث قرار میگیرند. این کتاب همچنین دارای حدود 400 تمرین و مسائل حل شده است که در طول متن در مقاطع مناسب در هم قرار گرفته اند تا جریان منطقی را تسهیل کند و مفاهیم کلیدی را آزمایش کند. به طور کلی این کتاب منبع ارزشمندی برای طیف وسیعی از دانشجویان و مربیان فیزیک ریاضی خواهد بود.
This textbook is aimed at advanced undergraduate and graduate students interested in learning the fundamental mathematical concepts and tools widely used in different areas of physics. The author draws on a vast teaching experience, and presents a comprehensive and self-contained text which explains how mathematics intertwines with and forms an integral part of physics in numerous instances. Rather than emphasizing rigorous proofs of theorems, specific examples and physical applications (such as fluid dynamics, electromagnetism, quantum mechanics, etc.) are invoked to illustrate and elaborate upon the relevant mathematical techniques. The early chapters of the book introduce different types of functions, vectors and tensors, vector calculus, and matrices. In the subsequent chapters, more advanced topics like linear spaces, operator algebras, special functions, probability distributions, stochastic processes, analytic functions, Fourier series and integrals, Laplace transforms, Green's functions and integral equations are discussed. The book also features about 400 exercises and solved problems interspersed throughout the text at appropriate junctures, to facilitate the logical flow and to test the key concepts. Overall this book will be a valuable resource for a wide spectrum of students and instructors of mathematical physics.
Preface Contents About the Author 1 Warming Up: Functions of a Real Variable 1.1 Sketching Functions 1.1.1 Features of Interest in a Function 1.1.2 Powers of x 1.1.3 A Family of Ovals 1.1.4 A Family of Spirals 1.2 Maps of the Unit Interval 2 Gaussian Integrals, Stirling's Formula, and Some Integrals 2.1 Gaussian Integrals 2.1.1 The Basic Gaussian Integral 2.1.2 A Couple of Higher Dimensional Examples 2.2 Stirling's Formula 2.3 The Dirichlet Integral and Its Descendants 2.4 Solutions 3 Some More Functions 3.1 Functions Represented by Integrals 3.1.1 Differentiation Under the Integral Sign 3.1.2 The Error Function 3.1.3 Fresnel Integrals 3.1.4 The Gamma Function 3.1.5 Connection to Gaussian Integrals 3.2 Interchange of the Order of Integration 3.3 Solutions 4 Generalized Functions 4.1 The Step Function 4.2 The Dirac Delta Function 4.2.1 Defining Relations 4.2.2 Sequences of Functions Tending to the δ-Function 4.2.3 Relation Between δ(x) and θ(x) 4.2.4 Fourier Representation of the δ-Function 4.2.5 Properties of the δ-Function 4.2.6 The Occurrence of the δ-Function in Physical Problems 4.2.7 The δ-Function in Polar Coordinates 4.3 Solutions 5 Vectors and Tensors 5.1 Cartesian Tensors 5.1.1 What Are Scalars and Vectors? 5.1.2 Rotations and the Index Notation 5.1.3 Isotropic Tensors 5.1.4 Dot and Cross Products in Three Dimensions 5.1.5 The Gram Determinant 5.1.6 Levi-Civita Symbol in d Dimensions 5.2 Rotations in Three Dimensions 5.2.1 Proper and Improper Rotations 5.2.2 Scalars and Pseudoscalars; Polar and Axial Vectors 5.2.3 Transformation Properties of Physical Quantities 5.3 Invariant Decomposition of a 2nd Rank Tensor 5.3.1 Spherical or Irreducible Tensors 5.3.2 Stress, Strain, and Stiffness Tensors 5.3.3 Moment of Inertia 5.3.4 The Euler Top 5.3.5 Multipole Expansion; Quadrupole Moment 5.3.6 The Octupole Moment 5.4 Solutions 6 Vector Calculus 6.1 Orthogonal Curvilinear Coordinates 6.1.1 Cylindrical and Spherical Polar Coordinates 6.1.2 Elliptic and Parabolic Coordinates 6.1.3 Polar Coordinates in d Dimensions 6.2 Scalar and Vector Fields and Their Derivatives 6.2.1 The Gradient of a Scalar Field 6.2.2 The Flux and Divergence of a Vector Field 6.2.3 The Circulation and Curl of a Vector Field 6.2.4 Some Physical Aspects of the Curl of a Vector Field 6.2.5 Any Vector Field is the Sum of a Curl and a Gradient 6.2.6 The Laplacian Operator 6.2.7 Why Do div, curl, and del-Squared Occur so Frequently? 6.2.8 The Standard Identities of Vector Calculus 6.3 Solutions 7 A Bit of Fluid Dynamics 7.1 Equation of Motion of a Fluid Element 7.1.1 Hydrodynamic Variables 7.1.2 Equation of Motion 7.2 Flow When Viscosity Is Neglected 7.2.1 Euler's Equation 7.2.2 Barotropic Flow 7.2.3 Bernoulli's Principle in Steady Flow 7.2.4 Irrotational Flow and the Velocity Potential 7.3 Vorticity 7.3.1 Vortex Lines 7.3.2 Equations in Terms of v Alone 7.4 Flow of a Viscous Fluid 7.4.1 The Viscous Force in a Fluid 7.4.2 The Navier–Stokes Equation 7.5 Solutions 8 Some More Vector Calculus 8.1 Integral Theorems of Vector Calculus 8.1.1 The Fundamental Theorem of Calculus 8.1.2 Stokes' Theorem 8.1.3 Green's Theorem 8.1.4 A Topological Restriction; ``Exact'' Versus ``Closed'' 8.1.5 Gauss's Theorem 8.1.6 Green's Identities and Reciprocity Relation 8.1.7 Comment on the Generalized Stokes' Theorem 8.2 Harmonic Functions 8.2.1 Mean Value Property 8.2.2 Harmonic Functions Have No Absolute Maxima or Minima 8.2.3 What Is the Significance of the Laplacian? 8.3 Singularities of Planar Vector Fields 8.3.1 Critical Points and the Poincaré Index 8.3.2 Degenerate Critical Points and Unfolding Singularities 8.3.3 Singularities of Three-Vector Fields 8.4 Solutions 9 A Bit of Electromagnetism and Special Relativity 9.1 Classical Electromagnetism 9.1.1 Maxwell's Field Equations 9.1.2 The Scalar and Vector Potentials 9.1.3 Gauge Invariance and Choice of Gauge 9.1.4 The Coulomb Gauge 9.1.5 Electrostatics 9.1.6 Magnetostatics 9.1.7 The Lorenz Gauge 9.2 Special Relativity 9.2.1 The Principle and the Postulate of Relativity 9.2.2 Boost Formulas 9.2.3 Collinear Boosts: Velocity Addition Rule 9.2.4 Rapidity 9.2.5 Lorentz Scalars and Four-Vectors 9.2.6 Matrices Representing Lorentz Transformations 9.3 Relativistic Invariance of Electromagnetism 9.3.1 Covariant Form of the Field Equations 9.3.2 The Electromagnetic Field Tensor 9.3.3 Transformation Properties of E and B 9.3.4 Lorentz Invariants of the Electromagnetic Field 9.3.5 Energy Density and the Poynting Vector 9.4 Solutions 10 Linear Vector Spaces 10.1 Definitions and Basic Properties 10.1.1 Definition of a Linear Vector Space 10.1.2 The Dual of a Linear Space 10.1.3 The Inner Product of Two Vectors 10.1.4 Basis Sets and Dimensionality 10.2 Orthonormal Basis Sets 10.2.1 Gram–Schmidt Orthonormalization 10.2.2 Expansion of an Arbitrary Vector 10.2.3 Basis Independence of the Inner Product 10.3 Some Important Inequalities 10.3.1 The Cauchy–Schwarz Inequality 10.3.2 The Triangle Inequality 10.3.3 The Gram Determinant Inequality 10.4 Solutions 11 A Look at Matrices 11.1 Pauli Matrices 11.1.1 Expansion of a (2times2) Matrix 11.1.2 Basic Properties of the Pauli Matrices 11.2 The Exponential of a Matrix 11.2.1 Occurrence and Definition 11.2.2 The Exponential of an Arbitrary (2times2) Matrix 11.3 Rotation Matrices in Three Dimensions 11.3.1 Generators of Infinitesimal Rotations and Their Algebra 11.3.2 The General Rotation Matrix 11.3.3 The Finite Rotation Formula for a Vector 11.4 The Eigenvalue Spectrum of a Matrix 11.4.1 The Characteristic Equation 11.4.2 Gershgorin's Circle Theorem 11.4.3 The Cayley–Hamilton Theorem 11.4.4 The Resolvent of a Matrix 11.5 A Generalization of the Gaussian Integral 11.6 Inner Product in the Linear Space of Matrices 11.7 Solutions 12 More About Matrices 12.1 Matrices as Operators in a Linear Space 12.1.1 Representation of Operators 12.1.2 Projection Operators 12.2 Hermitian, Unitary, and Positive Definite Matrices 12.2.1 Definitions and Eigenvalues 12.2.2 The Eigenvalues of a Rotation Matrix in d Dimensions 12.2.3 The General Form of a (2times2) Unitary Matrix 12.3 Diagonalization of a Matrix and all That 12.3.1 Eigenvectors, Nullspace, and Nullity 12.3.2 The Rank of a Matrix and the Rank-Nullity Theorem 12.3.3 Degenerate Eigenvalues and Defective Matrices 12.3.4 When Can a Matrix Be Diagonalized? 12.3.5 The Minimal Polynomial of a Matrix 12.3.6 Simple Illustrative Examples 12.3.7 Jordan Normal Form 12.3.8 Other Matrix Decompositions 12.3.9 Circulant Matrices 12.3.10 A Simple Illustration: A 3-state Random Walk 12.4 Commutators of Matrices 12.4.1 Mutually Commuting Matrices in Quantum Mechanics 12.4.2 The Lie Algebra of (n timesn) Matrices 12.5 Spectral Representation of a Matrix 12.5.1 Right and Left Eigenvectors of a Matrix 12.5.2 An Illustration 12.6 Solutions 13 Infinite-Dimensional Vector Spaces 13.1 The Space ell2 of Square-Summable Sequences 13.2 The Space mathcalL2 of Square-Integrable Functions 13.2.1 Definition of mathcalL2 13.2.2 Continuous Basis 13.2.3 Weight Functions: A Generalization of mathcalL2 13.2.4 mathcalL2(-infty,infty) Functions and Fourier Transforms 13.2.5 The Wave Function of a Particle 13.3 Hilbert Space and Subspaces 13.3.1 Hilbert Space 13.3.2 Linear Manifolds and Subspaces 13.4 Solutions 14 Linear Operators on a Vector Space 14.1 Some Basic Notions 14.1.1 Domain, Range, and Inverse 14.1.2 Linear Operators, Norm, and Bounded Operators 14.2 The Adjoint of an Operator 14.2.1 Densely Defined Operators 14.2.2 Definition of the Adjoint Operator 14.2.3 Symmetric, Hermitian, and Self-adjoint Operators 14.3 The Derivative Operator in mathcalL2 14.3.1 The Momentum Operator of a Quantum Particle 14.3.2 The Adjoint of the Derivative Operator in mathcalL2(-infty,infty) 14.3.3 When Is -i(d/dx) Self-adjoint in mathcalL2[a,b]? 14.3.4 Self-adjoint Extensions of Operators 14.3.5 Deficiency Indices 14.3.6 The Radial Momentum Operator in d 2 Dimensions 14.4 Nonsymmetric Operators 14.4.1 The Operators xpmip 14.4.2 Oscillator Ladder Operators and Coherent States 14.4.3 Eigenvalues and Non-normalizable Eigenstates of x and p 14.4.4 Matrix Representations for Unbounded Operators 14.5 Solutions 15 Operator Algebras and Identities 15.1 Operator Algebras 15.1.1 The Heisenberg Algebra 15.1.2 Some Other Basic Operator Algebras 15.2 Useful Operator Identities 15.2.1 Perturbation Series for an Inverse Operator 15.2.2 Hadamard's Lemma 15.2.3 Weyl Form of the Canonical Commutation Relation 15.2.4 The Zassenhaus Formula 15.2.5 The Baker–Campbell–Hausdorff Formula 15.3 Some Physical Applications 15.3.1 Angular Momentum Operators 15.3.2 Representation of Rotations by SU(2) Matrices 15.3.3 Connection Between the Groups SO(3) and SU(2) 15.3.4 The Parameter Space of SU(2) 15.3.5 The Parameter Space of SO(3) 15.3.6 The Parameter Space of SO(2) 15.4 Some More Physical Applications 15.4.1 The Displacement Operator and Coherent States 15.4.2 The Squeezing Operator and the Squeezed Vacuum 15.4.3 Values of z That Produce Squeezing in x or p 15.4.4 The Squeezing Operator and the Group SU(1,1) 15.4.5 SU(1,1) Generators in Terms of Pauli Matrices 15.5 Solutions 16 Orthogonal Polynomials 16.1 General Formalism 16.1.1 Introduction 16.1.2 Orthogonality and Completeness 16.1.3 Expansion and Inversion Formulas 16.1.4 Uniqueness and Explicit Representation 16.1.5 Recursion Relation 16.2 The Classical Orthogonal Polynomials 16.2.1 Polynomials of the Hypergeometric Type 16.2.2 The Hypergeometric Differential Equation 16.2.3 Rodrigues Formula and Generating Function 16.2.4 Class I.Hermite Polynomials 16.2.5 Linear Harmonic Oscillator Eigenfunctions 16.2.6 Oscillator Coherent State Wave Functions 16.2.7 Class II.Generalized Laguerre Polynomials 16.2.8 Class III.Jacobi Polynomials 16.3 Gegenbauer Polynomials 16.3.1 Ultraspherical Harmonics 16.3.2 Chebyshev Polynomials of the 1st Kind 16.3.3 Chebyshev Polynomials of the Second Kind 16.4 Legendre Polynomials 16.4.1 Basic Properties 16.4.2 Pn(x) by Gram–Schmidt Orthonormalization 16.4.3 Expansion in Legendre Polynomials 16.4.4 Expansion of xn in Legendre Polynomials 16.4.5 Legendre Function of the Second Kind 16.4.6 Associated Legendre Functions 16.4.7 Spherical Harmonics 16.4.8 Expansion of the Coulomb Kernel 16.5 Solutions 17 Fourier Series 17.1 Series Expansion of Periodic Functions 17.1.1 Dirichlet Conditions 17.1.2 Orthonormal Basis 17.1.3 Fourier Series Expansion and Inversion Formula 17.1.4 Parseval's Formula for Fourier Series 17.1.5 Simplified Formulas When (a,b) = (-π,π) 17.2 Asymptotic Behavior and Convergence 17.2.1 Uniform Convergence of Fourier Series 17.2.2 Large-n Behavior of Fourier Coefficients 17.2.3 Periodic Array of δ-Functions: The Dirac Comb 17.3 Summation of Series 17.3.1 Some Examples 17.3.2 The Riemann Zeta Function ζ(2k) 17.3.3 Fourier Series Expansions of cosαx and sinαx 17.4 Solutions 18 Fourier Integrals 18.1 Expansion of Nonperiodic Functions 18.1.1 Fourier Transform and Inverse Fourier Transform 18.1.2 Parseval's Formula for Fourier Transforms 18.1.3 Fourier Transform of the δ-Function 18.1.4 Examples of Fourier Transforms 18.1.5 Relative ``Spreads'' of a Fourier Transform Pair 18.1.6 The Convolution Theorem 18.1.7 Generalized Parseval Formula 18.2 The Fourier Transform Operator in mathcalL2 18.2.1 Iterates of the Fourier Transform Operator 18.2.2 Eigenvalues and Eigenfunctions of mathcalF 18.2.3 The Adjoint of an Integral Operator 18.2.4 Unitarity of the Fourier Transformation 18.3 Generalization to Several Dimensions 18.4 The Poisson Summation Formula 18.4.1 Derivation of the Formula 18.4.2 Some Illustrative Examples 18.4.3 Generalization to Higher Dimensions 18.5 Solutions 19 Discrete Probability Distributions 19.1 Some Elementary Distributions 19.1.1 Mean and Variance 19.1.2 Bernoulli Trials and the Binomial Distribution 19.1.3 Number Fluctuations in a Classical Ideal Gas 19.1.4 The Geometric Distribution 19.1.5 Photon Number Distribution in Blackbody Radiation 19.2 The Poisson Distribution 19.2.1 From the Binomial to the Poisson Distribution 19.2.2 Photon Number Distribution in Coherent Radiation 19.2.3 Photon Number Distribution in the Squeezed Vacuum State 19.2.4 The Sum of Poisson-Distributed Random Variables 19.2.5 The Difference of Two Poisson-Distributed Random Variables 19.3 The Negative Binomial Distribution 19.4 The Simple Random Walk 19.4.1 Random Walk on a Linear Lattice 19.4.2 Some Generalizations of the Simple Random Walk 19.5 Solutions 20 Continuous Probability Distributions 20.1 Continuous Random Variables 20.1.1 Probability Density and Cumulative Distribution 20.1.2 The Moment-Generating Function 20.1.3 The Cumulant-Generating Function 20.1.4 Application to the Discrete Distributions 20.1.5 The Characteristic Function 20.1.6 The Additivity of Cumulants 20.2 The Gaussian Distribution 20.2.1 The Normal Density and Distribution 20.2.2 Moments and Cumulants of a Gaussian Distribution 20.2.3 Simple Functions of a Gaussian Random Variable 20.2.4 Mean Collision Rate in a Dilute Gas 20.3 The Gaussian as a Limit Law 20.3.1 Linear Combinations of Gaussian Random Variables 20.3.2 The Central Limit Theorem 20.3.3 An Explicit Illustration of the Central Limit Theorem 20.4 Random Flights 20.4.1 From Random Flights to Diffusion 20.4.2 The Probability Density for Short Random Flights 20.5 The Family of Stable Distributions 20.5.1 What Is a Stable Distribution? 20.5.2 The Characteristic Function of Stable Distributions 20.5.3 Three Important Cases: Gaussian, Cauchy, and Lévy 20.5.4 Some Connections Between the Three Cases 20.6 Infinitely Divisible Distributions 20.6.1 Divisibility of a Random Variable 20.6.2 Infinite Divisibility Does Not Imply Stability 20.7 Solutions 21 Stochastic Processes 21.1 Multiple-Time Joint Probabilities 21.2 Discrete Markov Processes 21.2.1 The Two-Time Conditional Probability 21.2.2 The Master Equation 21.2.3 Formal Solution of the Master Equation 21.2.4 The Stationary Distribution 21.2.5 Detailed Balance 21.3 The Autocorrelation Function 21.4 The Dichotomous Markov Process 21.4.1 The Stationary Distribution 21.4.2 Solution of the Master Equation 21.5 Birth-and-Death Processes 21.5.1 The Poisson Pulse Process and Radioactive Decay 21.5.2 Biased Random Walk on a Linear Lattice 21.5.3 Connection with the Skellam Distribution 21.5.4 Asymptotic Behavior of the Probability 21.6 Continuous Markov Processes 21.6.1 Master Equation for the Conditional density 21.6.2 The Fokker–Planck Equation 21.6.3 The Autocorrelation Function for a Continuous Process 21.7 The Stationary Gaussian Markov Process 21.7.1 The Ornstein–Uhlenbeck Process 21.7.2 The Ornstein–Uhlenbeck Distribution 21.7.3 Velocity Distribution in a Classical Ideal Gas 21.7.4 Solution for an Arbitrary Initial Velocity Distribution 21.7.5 Diffusion of a Harmonically Bound Particle 21.8 Solutions 22 Analytic Functions of a Complex Variable 22.1 Some Preliminaries 22.1.1 Complex Numbers 22.1.2 Equations to Curves in the Plane in Terms of z 22.2 The Riemann Sphere 22.2.1 Stereographic Projection 22.2.2 Maps of Circles on the Riemann Sphere 22.2.3 A Metric on the Extended Complex Plane 22.3 Analytic Functions of z 22.3.1 The Cauchy–Riemann Conditions 22.3.2 The Real and Imaginary Parts of an Analytic Function 22.4 The Derivative of an Analytic Function 22.5 Power Series as Analytic Functions 22.5.1 Radius and Circle of Convergence 22.5.2 An Instructive Example 22.5.3 Behavior on the Circle of Convergence 22.5.4 Lacunary Series 22.6 Entire Functions 22.6.1 Representation of Entire Functions 22.6.2 The Order of an Entire Function 22.7 Solutions 23 More on Analytic Functions 23.1 Cauchy's Integral Theorem 23.2 Singularities 23.2.1 Simple Pole; Residue at a Pole 23.2.2 Multiple pole 23.2.3 Essential Singularity 23.2.4 Laurent Series 23.2.5 Singularity at Infinity 23.2.6 Accumulation Points 23.2.7 Meromorphic Functions 23.3 Contour Integration 23.3.1 A Basic Formula 23.3.2 Cauchy's Residue Theorem 23.3.3 The Dirichlet Integral; Cauchy Principal Value 23.3.4 The ``iε-Prescription'' for a Singular Integral 23.3.5 Residue at Infinity 23.4 Summation of Series Using Contour Integration 23.5 Linear Recursion Relations with Constant Coefficients 23.5.1 The Generating Function 23.5.2 Hemachandra-Fibonacci Numbers 23.5.3 Catalan Numbers 23.5.4 Connection with Wigner's Semicircular Distribution 23.6 Mittag-Leffler Expansion of Meromorphic Functions 23.7 Solutions 24 Linear Response and Analyticity 24.1 The Dynamic Susceptibility 24.1.1 Linear, Causal, Retarded Response 24.1.2 Frequency-Dependent Response 24.1.3 Symmetry Properties of the Dynamic Susceptibility 24.2 Dispersion Relations 24.2.1 Derivation of the Relations 24.2.2 Complex Admittance of an LCR Circuit 24.2.3 Subtracted Dispersion Relations 24.2.4 Hilbert Transform Pairs 24.2.5 Discrete and Continuous Relaxation Spectra 24.3 Solutions 25 Analytic Continuation and the Gamma Function 25.1 Analytic Continuation 25.1.1 What Is Analytic Continuation? 25.1.2 The Permanence of Functional Relations 25.2 The Gamma Function for Complex Argument 25.2.1 Stripwise Analytic Continuation of Γ(z) 25.2.2 Mittag-Leffler Expansion of Γ(z) 25.2.3 Logarithmic Derivative of Γ(z) 25.2.4 Infinite Product Representation of Γ(z) 25.2.5 Connection with the Riemann Zeta Function 25.2.6 The Beta Function 25.2.7 Reflection Formula for Γ(z) 25.2.8 Legendre's Doubling Formula 25.3 Solutions 26 Multivalued Functions and Integral Representations 26.1 Multivalued Functions 26.1.1 Branch Points and Branch Cuts 26.1.2 Types of Branch Points 26.1.3 Contour Integrals in the Presence of Branch Points 26.2 Contour Integral Representations 26.2.1 The Gamma Function 26.2.2 The Beta Function 26.2.3 The Riemann Zeta Function 26.2.4 Connection with Bernoulli Numbers 26.2.5 The Legendre Functions Pν(z) and Qν(z) 26.3 Singularities of Functions Defined by Integrals 26.3.1 End Point and Pinch Singularities 26.3.2 Singularities of the Legendre Functions 26.4 Solutions 27 Möbius Transformations 27.1 Conformal Mapping 27.2 Möbius (or Fractional Linear) Transformations 27.2.1 Definition 27.2.2 Fixed Points 27.2.3 The Cross-Ratio and Its Invariance 27.3 Normal Form of a Möbius Transformation 27.3.1 Normal Forms in Different Cases 27.3.2 Iterates of a Möbius Transformation 27.3.3 Classification of Möbius Transformations 27.3.4 The Isometric Circle 27.4 Group Properties 27.4.1 The Möbius Group 27.4.2 The Möbius Group Over the Reals 27.4.3 The Invariance Group of the Unit Circle 27.4.4 The Group of Cross-Ratios 27.5 Solutions 28 Laplace Transforms 28.1 Definition and Properties 28.1.1 Definition of the Laplace Transform 28.1.2 Transforms of Some Simple Functions 28.1.3 The Convolution Theorem 28.1.4 Laplace Transforms of Derivatives 28.2 The Inverse Laplace Transform 28.2.1 The Mellin Formula 28.2.2 LCR Circuit Under a Sinusoidal Applied Voltage 28.3 Bessel Functions and Laplace Transforms 28.3.1 Differential Equations and Power Series Representations 28.3.2 Generating Functions and Integral Representations 28.3.3 Spherical Bessel Functions 28.3.4 Laplace Transforms of Bessel Functions 28.4 Laplace Transforms and Random Walks 28.4.1 Random Walk in d Dimensions 28.4.2 The First-Passage-Time Distribution 28.5 Solutions 29 Green Function for the Laplacian Operator 29.1 The Partial Differential Equations of Physics 29.2 Green Functions 29.2.1 Green Function for an Ordinary Differential Operator 29.2.2 An Illustrative Example 29.3 The Fundamental Green Function for 2 29.3.1 Poisson's Equation in Three Dimensions 29.3.2 The Solution for G(3)(r, r') 29.3.3 Solution of Poisson's Equation 29.3.4 Connection with the Coulomb Potential 29.4 The Coulomb Potential in d > 3 Dimensions 29.4.1 Simplification of the Fundamental Green Function 29.4.2 Power Counting and a Divergence Problem 29.4.3 Dimensional Regularization 29.4.4 A Direct Derivation 29.5 The Coulomb Potential in d=2 Dimensions 29.5.1 Dimensional Regularization 29.5.2 Direct Derivation 29.5.3 An Alternative Regularization 29.6 Solutions 30 The Diffusion Equation 30.1 The Fundamental Gaussian Solution 30.1.1 Fick's Laws of Diffusion 30.1.2 Further Remarks on Linear Response 30.1.3 The Fundamental Solution in d Dimensions 30.1.4 Solution for an Arbitrary Initial Distribution 30.1.5 Moments of the Distance Travelled in Time t 30.2 Diffusion in One Dimension 30.2.1 Continuum Limit of a Biased Random Walk 30.2.2 Free Diffusion on an Infinite Line 30.2.3 Absorbing and Reflecting Boundary Conditions 30.2.4 Finite Boundaries: Solution by the Method of Images 30.2.5 Finite Boundaries: Solution by Separation of Variables 30.2.6 Survival Probability and Escape-Time Distribution 30.2.7 Equivalence of the Solutions 30.3 Diffusion with Drift: Sedimentation 30.3.1 The Smoluchowski Equation 30.3.2 Equilibrium Barometric Distribution 30.3.3 The Time-Dependent Solution 30.4 The Schrödinger Equation for a Free Particle 30.4.1 Connection with the Free-Particle Propagator 30.4.2 Spreading of a Quantum Mechanical Wave Packet 30.4.3 The Wave Packet in Momentum Space 30.5 Solutions 31 The Wave Equation 31.1 Causal Green Function of the Wave Operator 31.1.1 Formal Solution as a Fourier Transform 31.1.2 Simplification of the Formal Solution 31.2 Explicit Solutions for d =1, 2 and 3 31.2.1 The Green Function in (1+1) Dimensions 31.2.2 The Green Function in (2+1) Dimensions 31.2.3 The Green Function in (3+1) Dimensions 31.2.4 Retarded Solution of the Wave Equation 31.3 Remarks on Propagation in Dimensions d > 3 31.4 Solutions 32 Integral Equations 32.1 Fredholm Integral Equations 32.1.1 Equation of the First Kind 32.1.2 Equation of the Second Kind 32.1.3 Degenerate Kernels 32.1.4 The Eigenvalues of a Degenerate Kernel 32.1.5 Iterative Solution: Neumann Series 32.2 Nonrelativistic Potential Scattering 32.2.1 The Scattering Amplitude 32.2.2 Integral Equation for Scattering 32.2.3 Green Function for the Helmholtz Operator 32.2.4 Formula for the Scattering Amplitude 32.2.5 The Born Approximation 32.2.6 Yukawa and Coulomb Potentials; Rutherford's Formula 32.3 Partial Wave Analysis 32.3.1 The Physical Idea Behind Partial Wave Analysis 32.3.2 Expansion of a Plane Wave in Spherical Harmonics 32.3.3 Partial Wave Scattering Amplitude and Phase Shift 32.3.4 The Optical Theorem 32.4 The Fredholm Solution 32.4.1 The Fredholm Formulas 32.4.2 Remark on the Application to the Scattering Problem 32.5 Volterra Integral Equations 32.6 Solutions Appendix Bibliography and Further Reading Index