دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Shu Hotta
سری:
ISBN (شابک) : 9811522243, 9789811522246
ناشر: Springer Nature
سال نشر: 2020
تعداد صفحات: 920
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Mathematical Physical Chemistry: Practical and Intuitive Methodology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی فیزیک ریاضی: روش شناسی عملی و شهودی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to the Second Edition Preface to the First Edition Contents Part I: Quantum Mechanics Chapter 1: Schrödinger Equation and Its Application 1.1 Early-Stage Quantum Theory 1.2 Schrödinger Equation 1.3 Simple Applications of Schrödinger Equation 1.4 Quantum-Mechanical Operators and Matrices 1.5 Commutator and Canonical Commutation Relation Reference Chapter 2: Quantum-Mechanical Harmonic Oscillator 2.1 Classical Harmonic Oscillator 2.2 Formulation Based on an Operator Method 2.3 Matrix Representation of Physical Quantities 2.4 Coordinate Representation of Schrödinger Equation 2.5 Variance and Uncertainty Principle References Chapter 3: Hydrogen-Like Atoms 3.1 Introductory Remarks 3.2 Constitution of Hamiltonian 3.3 Separation of Variables 3.4 Generalized Angular Momentum 3.5 Orbital Angular Momentum: Operator Approach 3.6 Orbital Angular Momentum: Analytic Approach 3.6.1 Spherical Surface Harmonics and Associated Legendre Differential Equation 3.6.2 Orthogonality of Associated Legendre Functions 3.7 Radial Wave Functions of Hydrogen-Like Atoms 3.7.1 Operator Approach to Radial Wave Functions 3.7.2 Normalization of Radial Wave Functions 3.7.3 Associated Laguerre Polynomials 3.8 Total Wave Functions References Chapter 4: Optical Transition and Selection Rules 4.1 Electric Dipole Transition 4.2 One-Dimensional System 4.3 Three-Dimensional System 4.4 Selection Rules 4.5 Angular Momentum of Radiation [6] References Chapter 5: Approximation Methods of Quantum Mechanics 5.1 Perturbation Method 5.1.1 Quantum State and Energy Level Shift Caused by Perturbation 5.1.2 Several Examples 5.2 Variational Method References Chapter 6: Theory of Analytic Functions 6.1 Set and Topology 6.1.1 Basic Notions and Notations 6.1.2 Topological Spaces and Their Building Blocks 6.1.3 T1-Space 6.1.4 Complex Numbers and Complex Plane 6.2 Analytic Functions of a Complex Variable 6.3 Integration of Analytic Functions: Cauchy´s Integral Formula 6.4 Taylor´s Series and Laurent´s Series 6.5 Zeros and Singular Points 6.6 Analytic Continuation 6.7 Calculus of Residues 6.8 Examples of Real Definite Integrals 6.9 Multivalued Functions and Riemann Surfaces 6.9.1 Brief Outline 6.9.2 Examples of Multivalued Functions References Part II: Electromagnetism Chapter 7: Maxwell´s Equations 7.1 Maxwell´s Equations and Their Characteristics 7.2 Equation of Wave Motion 7.3 Polarized Characteristics of Electromagnetic Waves 7.4 Superposition of Two Electromagnetic Waves References Chapter 8: Reflection and Transmission of Electromagnetic Waves in Dielectric Media 8.1 Electromagnetic Fields at an Interface 8.2 Basic Concepts Underlying Phenomena 8.3 Transverse Electric (TE) Waves and Transverse Magnetic (TM) Waves 8.4 Energy Transport by Electromagnetic Waves 8.5 Brewster Angles and Critical Angles 8.6 Total Reflection 8.7 Waveguide Applications 8.7.1 TE and TM Waves in a Waveguide 8.7.2 Total Internal Reflection and Evanescent Waves 8.8 Stationary Waves References Chapter 9: Light Quanta: Radiation and Absorption 9.1 Blackbody Radiation 9.2 Planck´s Law of Radiation and Mode Density of Electromagnetic Waves 9.3 Two-Level Atoms 9.4 Dipole Radiation 9.5 Lasers 9.5.1 Brief Outlook 9.5.2 Organic Lasers 9.6 Mechanical System References Chapter 10: Introductory Green´s Functions 10.1 Second-Order Linear Differential Equations (SOLDEs) 10.2 First-Order Linear Differential Equations (FOLDEs) 10.3 Second-Order Differential Operators 10.4 Green´s Functions 10.5 Construction of Green´s Functions 10.6 Initial Value Problems (IVPs) 10.6.1 General Remarks 10.6.2 Green´s Functions for IVPs 10.6.3 Estimation of Surface Terms 10.6.4 Examples 10.7 Eigenvalue Problems References Part III: Linear Vector Spaces Chapter 11: Vectors and Their Transformation 11.1 Vectors 11.2 Linear Transformations of Vectors 11.3 Inverse Matrices and Determinants 11.4 Basis Vectors and Their Transformations Reference Chapter 12: Canonical Forms of Matrices 12.1 Eigenvalues and Eigenvectors 12.2 Eigenspaces and Invariant Subspaces 12.3 Generalized Eigenvectors and Nilpotent Matrices 12.4 Idempotent Matrices and Generalized Eigenspaces 12.5 Decomposition of Matrix 12.6 Jordan Canonical Form 12.6.1 Canonical Form of Nilpotent Matrix 12.6.2 Jordan Blocks 12.6.3 Example of Jordan Canonical Form 12.7 Diagonalizable Matrices References Chapter 13: Inner Product Space 13.1 Inner Product and Metric 13.2 Gram Matrices 13.3 Adjoint Operators 13.4 Orthonormal Basis References Chapter 14: Hermitian Operators and Unitary Operators 14.1 Projection Operators 14.2 Normal Operators 14.3 Unitary Diagonalization of Matrices 14.4 Hermitian Matrices and Unitary Matrices 14.5 Hermitian Quadratic Forms 14.6 Simultaneous Eigenstates and Diagonalization References Chapter 15: Exponential Functions of Matrices 15.1 Functions of Matrices 15.2 Exponential Functions of Matrices and Their Manipulations 15.3 System of Differential Equations 15.3.1 Introduction 15.3.2 System of Differential Equations in a Matrix Form: Resolvent Matrix 15.3.3 Several Examples 15.4 Motion of a Charged Particle in Polarized Electromagnetic Wave References Part IV: Group Theory and Its Chemical Applications Chapter 16: Introductory Group Theory 16.1 Definition of Groups 16.2 Subgroups 16.3 Classes 16.4 Isomorphism and Homomorphism 16.5 Direct-Product Groups Reference Chapter 17: Symmetry Groups 17.1 A Variety of Symmetry Operations 17.2 Successive Symmetry Operations 17.3 O and Td Groups 17.4 Special Orthogonal Group SO(3) 17.4.1 Rotation Axis and Rotation Matrix 17.4.2 Euler Angles and Related Topics References Chapter 18: Representation Theory of Groups 18.1 Definition of Representation 18.2 Basis Functions of Representation 18.3 Schur´s Lemmas and Grand Orthogonality Theorem (GOT) 18.4 Characters 18.5 Regular Representation and Group Algebra 18.6 Classes and Irreducible Representations 18.7 Projection Operators 18.8 Direct-Product Representation 18.9 Symmetric Representation and Antisymmetric Representation References Chapter 19: Applications of Group Theory to Physical Chemistry 19.1 Transformation of Functions 19.2 Method of Molecular Orbitals (MOs) 19.3 Calculation Procedures of Molecular Orbitals (MOs) 19.4 MO Calculations Based on π-Electron Approximation 19.4.1 Ethylene 19.4.2 Cyclopropenyl Radical [1] 19.4.3 Benzene 19.4.4 Allyl Radical [1] 19.5 MO Calculations of Methane References Chapter 20: Theory of Continuous Groups 20.1 Introduction: Operators of Rotation and Infinitesimal Rotation 20.2 Rotation Groups: SU(2) and SO(3) 20.2.1 Construction of SU(2) Matrices 20.2.2 SU(2) Representation Matrices: Wigner Formula 20.2.3 SO(3) Representation Matrices and Spherical Surface Harmonics 20.2.4 Irreducible Representations of SU(2) and SO(3) 20.2.5 Parameter Space of SO(3) 20.2.6 Irreducible Characters of SO(3) and Their Orthogonality 20.3 Clebsch-Gordan Coefficients of Rotation Groups 20.3.1 Direct-Product of SU(2) and Clebsch-Gordan Coefficients 20.3.2 Calculation Procedures of Clebsch-Gordan Coefficients 20.3.3 Examples of Calculation of Clebsch-Gordan Coefficients 20.4 Lie Groups and Lie Algebras 20.4.1 Definition of Lie Groups and Lie Algebras: One-Parameter Groups 20.4.2 Properties of Lie Algebras 20.4.3 Adjoint Representation of Lie Groups 20.5 Connectedness of Lie Groups 20.5.1 Several Definitions and Examples 20.5.2 O(3) and SO(3) 20.5.3 Simply Connected Lie Groups: Local Properties and Global Properties References Index