ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers

دانلود کتاب مواد برای مهندسی زیست پزشکی: ترموست و پلیمرهای ترموپلاستیک

Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers

مشخصات کتاب

Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0128168749, 9780128168745 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 577 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد برای مهندسی زیست پزشکی: ترموست و پلیمرهای ترموپلاستیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد برای مهندسی زیست پزشکی: ترموست و پلیمرهای ترموپلاستیک



مواد برای مهندسی زیست پزشکی: ترموست و پلیمرهای ترموپلاستیک جدیدترین و جالب ترین رویکردها را برای مهندسی پلیمر هوشمند در پیشرفت فعلی و آینده در علوم زیست پزشکی ارائه می دهد. تاکید ویژه بر خواص مورد نیاز برای هر پلیمر انتخاب شده و چگونگی افزایش پتانسیل زیست پزشکی آنها در کاربردهای مختلف، مانند دارورسانی و مهندسی بافت است. این مواد برای استفاده در تشخیص، درمان و پیشگیری در نظر گرفته شده اند، اما با دیگر کاربردهای مرتبط با زیست پزشکی مانند حسگرها نیز قابل ارتباط هستند. پیشرفت‌های اخیر و دیدگاه‌های آینده در مورد استفاده از آنها در زیست‌پزشکی به تفصیل مورد بحث قرار گرفته‌اند و این کتاب را به یک منبع ایده‌آل برای این موضوع تبدیل می‌کند.


توضیحاتی درمورد کتاب به خارجی

Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers presents the newest and most interesting approaches to intelligent polymer engineering in both current and future progress in biomedical sciences. Particular emphasis is placed on the properties needed for each selected polymer and how to increase their biomedical potential in varying applications, such as drug delivery and tissue engineering. These materials are intended for use in diagnoses, therapy and prophylaxis, but are also relatable to other biomedical related applications, such as sensors. Recent developments and future perspectives regarding their use in biomedicine are discussed in detail, making this book an ideal source on the topic.



فهرست مطالب

Cover
Thermoset and Thermoplastic Polymers
Copyright
List of Contributors
Series Preface
Preface
1 Introduction in thermoplastic and thermosetting polymers
	1.1 Introduction
	1.2 Biomedical Polymers
	1.3 Thermoplastic and Thermosetting Polymers
		1.3.1 Thermoplastics
		1.3.2 Thermosets
	1.4 Biomedical Thermoplastic and Thermosetting Polymers
		1.4.1 Polyethylene Glycol
		1.4.2 Polyvinyl Alcohol
		1.4.3 Chitosan
		1.4.4 Shape Memory Polymers
	1.5 Conclusion
	References
2 Laser surface texturing of thermoplastics to improve biological performance
	2.1 Introduction
	2.2 Impact of Roughness and Wettability on Biocompatibility
	2.3 Surface Engineering Processes
		2.3.1 Surface Roughening
		2.3.2 Surface Chemical Modification
	2.4 Basics of Laser Surface Texturing
		2.4.1 Introduction
		2.4.2 Process Fundamentals
		2.4.3 Components of a Laser Texturing Setup
		2.4.4 Processing Parameters
			2.4.4.1 Wavelength of the laser radiation
			2.4.4.2 Beam mode (continuous-wave versus pulsed lasers)
			2.4.4.3 Pulse length
			2.4.4.4 Pulse energy
	2.5 Laser Surface Texturing of Thermoplastic Polymers
		2.5.1 Poly(Etheretherketone)
		2.5.2 Polycarbonate
		2.5.3 Polypropylene
		2.5.4 Polyethylene
		2.5.5 Poly(Ethylene Terephthalate)
		2.5.6 Ultra-High-Molecular-Weight Polyethylene
		2.5.7 Poly(Methyl Methacrylate)
		2.5.8 Other Thermoplastic Polymers
	2.6 Challenges and Future Trends
	2.7 Conclusions
	Acknowledgments
	References
3 Light-mediated thermoset polymers
	3.1 Introduction
	3.2 Types of Light-Sensitive Polymers
		3.2.1 Polyurethanes
			3.2.1.1 Synthetic routes to photocrosslinkable polyurethane polymers
			3.2.1.2 Radiation curing in surface modification
			3.2.1.3 Shape memory polymers
		3.2.2 Poly-acrylates/methacrylates
			3.2.2.1 As dental materials
			3.2.2.2 As hydrogel biomaterials
		3.2.3 Light-Sensitive Vinyl Monomers
			3.2.3.1 N-Vinyl pyrrrolidone
			3.2.3.2 Vinyl carbonate
			3.2.3.3 Vinyl esters
	3.3 Photoinitiators
		3.3.1 Irgacure 2959
		3.3.2 2,4,6-Trimethyl benzoyl-Diphenyl phosphine Oxide
		3.3.3 Camphorquinone with Amine Photoinitiator System
	3.4 Mechanisms of Light Sensitization
	3.5 Polyacrylates for Biopolymer Applications
		3.5.1 Polycaprolactone
		3.5.2 Starch
		3.5.3 Dextran
		3.5.4 Gelatin
		3.5.5 Chitosan
		3.5.6 Hyaluronic Acid
	3.6 Recent Advancements and Trends in Light-Mediated Polymerizations
	3.7 Conclusion
	References
4 Thermoset, bioactive, metal–polymer composites for medical applications
	4.1 Thermosetting Polymers
		4.1.1 Introduction
		4.1.2 Synthesis of Thermoset Polymers
			4.1.2.1 Synthesis of thermosetting polymers by polymerization
			4.1.2.2 Synthesis of thermosetting polymers by crosslinking or curing
		4.1.3 Properties of Thermosetting Polymers
			4.1.3.1 Formulations
			4.1.3.2 Solvent resistant
			4.1.3.3 Melt viscosity
			4.1.3.4 Mechanical properties
			4.1.3.5 Fiber impregnation
			4.1.3.6 Processing cycle
		4.1.4 Characterization of Thermoset Polymers
			4.1.4.1 Fourier transform infrared spectroscopy
			4.1.4.2 Nuclear magnetic resonance spectroscopy
			4.1.4.3 Differential scanning colorimetry
			4.1.4.4 Thermogravimetric analysis
			4.1.4.5 Dynamic mechanical thermal analysis
			4.1.4.6 X-ray fluorescence spectroscopy
		4.1.5 Applications of Thermoset Polymers
			4.1.5.1 Urea–formaldehyde resin
			4.1.5.2 Melamine–formaldehyde resins
			4.1.5.3 Phenol–formaldehyde resin
			4.1.5.4 Polyelectrolytes
			4.1.5.5 Polyurethane
			4.1.5.6 Epoxy resins
			4.1.5.7 Unsaturated polyester resin
	4.2 Thermoset Metal–Polymer Composites
		4.2.1 Introduction
		4.2.2 Synthesis of Thermoset Composites
		4.2.3 Properties of Thermoset Polymer Composites
			4.2.3.1 Tensile strength
			4.2.3.2 Fracture surface
			4.2.3.3 Stress–strain behavior
			4.2.3.4 Dynamic mechanical properties
			4.2.3.5 Wear performance
		4.2.4 Characterization of Thermoset Polymer Composite
		4.2.5 Applications of Thermoset Polymer Composites
	4.3 Applications in Biomedical Engineering
		4.3.1 In Dentistry
		4.3.2 In Prosthetic Heart Valves
		4.3.3 In Bones
		4.3.4 In Bone Grafting
		4.3.5 In Prosthetic Sockets
		4.3.6 In Medical Devices
	References
	Further Reading
5 Epoxy composites in biomedical engineering
	5.1 Introduction
	5.2 Artificial Implants and Bone Fixation Plates
		5.2.1 Artificial Implants
		5.2.2 Fixation Plates, Screws, and Intramedullary Nails
	5.3 Tribological Characterization of Green Composites for Biomedical Applications
		5.3.1 Bulk Composites
		5.3.2 Composite Coatings
	5.4 Dental Applications
	5.5 Research Works Based on Bioepoxy Resins
	5.6 Composite Shape Memory Polymers for Biomedical Applications
	5.7 General Biomedical Applications
	5.8 Summary of Research Works in Epoxy Composites for Biomedical Applications
	5.9 Conclusions
	References
6 Polyethylene and polypropylene matrix composites for biomedical applications
	6.1 Introduction
	6.2 Polyolefin Composites
	6.3 Biomedical Engineering
	6.4 Biocompatibility Evaluation of Polyolefin-Based Biocomposites
		6.4.1 Tests for Biocompatibility
	6.5 Fabrication Techniques for Polyolefin Biomedical Composites
		6.5.1 Molding
		6.5.2 Extrusion
		6.5.3 Melt Electrospinning
		6.5.4 Filament Winding
		6.5.5 Thermoplastic Pultrusion
	6.6 Polyethylene Matrix
		6.6.1 HDPE-Based Biomedical Composites
		6.6.2 UHMWPE-Based Biomedical Composites
	6.7 Polypropylene Matrix
		6.7.1 Finger Joint Implants
		6.7.2 Bone Cement
		6.7.3 Scaffolds
		6.7.4 Antimicrobial Applications
		6.7.5 Sutures
	6.8 Conclusions
	References
7 Polymethacrylates
	7.1 Material Selection for Medical Applications: Requirements for Several Kinds of Medical Applications
	7.2 Chemistry of Polymethacrylates and Their Composites
		7.2.1 Monomers
			7.2.1.1 Methyl methacrylate
			7.2.1.2 Other methacrylates for dental applications
			7.2.1.3 Composition of the matrix
				Monomers
				Activators and polymerization initiators
				Polymerization inhibitors
				Coupling agents
		7.2.2 Dental Composites
			7.2.2.1 Particle size and distribution of fillers
			7.2.2.2 Viscosity
			7.2.2.3 Polymerization mode
		7.2.3 Challenges in Improving Properties
	7.3 Methods for Material Synthesis
		7.3.1 Radical Polymerization Reaction of PMMA (Difunctionnal Monomer)
			7.3.1.1 Mechanistic aspects
			7.3.1.2 Kinetic aspects
		7.3.2 Polymerization of Methacrylate Networks
			7.3.2.1 Mechanistic aspects
			7.3.2.2 Polymerization kinetics
		7.3.3 Parameters Influencing Polymerization
			7.3.3.1 Intrinsic factors
			7.3.3.2 Extrinsic factors
		7.3.4 Polymerization Shrinkage and its Consequences
	7.4 Physicochemical, Biological and Mechanical Properties
		7.4.1 Structure–Properties Relationships and Link With Clinical Applications
			7.4.1.1 Glass transition temperature and other transitions
			7.4.1.2 Short deformation properties
			7.4.1.3 Ultimate properties
		7.4.2 Biocompatibility
	7.5 Long-Term Behavior
		7.5.1 Aging by Physical Relaxation
		7.5.2 Humid Ageing
			7.5.2.1 Water solubility
			7.5.2.2 Water diffusion
			7.5.2.3 Consequences of physical ageing on mechanical properties
			7.5.2.4 Role of the interface
			7.5.2.5 Effect of penetrant composition mixture
		7.5.3 Chemical Ageing by Hydrolysis
		7.5.4 Chemical Ageing by Radiolysis
		7.5.5 Creep and Fatigue
	7.6 Conclusion and Prospects for the Future of These Materials
	References
8 Thermoset polymethacrylate-based materials for dental applications
	8.1 Introduction
		8.1.1 Gold
		8.1.2 Porcelain
		8.1.3 Vulcanite
		8.1.4 Aluminum
		8.1.5 Celluloid
		8.1.6 Bakelite
		8.1.7 Polyvinyl Chloride
		8.1.8 Base Metal Alloys
	8.2 Poly(Methyl Methacrylate) as a Denture Base
		8.2.1 Classification of PMMA Resins
			8.2.1.1 According to the ISO standards
			8.2.1.2 According to method of polymerization
				Heat cured PMMA
					Polymerization stages of heat cured PMMA
					Initiation and activation
					Propagation
					Termination
					The sandy stage
					The stringy stage
					The doughy stage
					The rubbery stage
					The stiff stage
				The compression molding technique
				The injection molding technique
					Polymerization cycles
				Chemically cured PMMA
				Light cured PMMA
				Microwave curing PMMA
	8.3 Properties of PMMA Denture Base Resins
		8.3.1 Flexural Strength
		8.3.2 Fracture Toughness
		8.3.3 Impact Strength
		8.3.4 Crosslinking
		8.3.5 Sorption and Solubility
		8.3.6 Thermal Conductivity
		8.3.7 Residual Monomer
		8.3.8 Color Stability
		8.3.9 Radiopacity
		8.3.10 Biocompatibility and Cytotoxicity
	8.4 Contemporary Denture Base Materials and Modifications of PMMA
		8.4.1 Polyamides
		8.4.2 Epoxy Resins
		8.4.3 Polycarbonates
	8.5 Chemical Modification of PMMA
	8.6 Reinforcement of PMMA Denture Base Materials
		8.6.1 Reinforcement With Metal Wires or Mesh
		8.6.2 Fiber Reinforcement
			8.6.2.1 Effects of fiber length on properties of fiber reinforced denture base resins
			8.6.2.2 Effect of fiber orientation
			8.6.2.3 Effects of resin impregnation on PMMA resin-based materials
			8.6.2.4 The effect of silane treatment on properties of PMMA denture base resins
		8.6.3 Different Types of Fibers Used in Dentistry
			8.6.3.1 Carbon fibers
			8.6.3.2 Aramid fibers
			8.6.3.3 Polyethylene (UHMWPE) fibers
			8.6.3.4 Glass fibers
				Types and composition of glass fibers
				Properties of glass fiber reinforced denture base resins
	8.7 Conclusion
	List of Abbreviations
	References
	Further Reading
9 Maleic anhydride copolymers as a base for neoglycoconjugate synthesis for lectin binding
	9.1 Introduction
	9.2 Experimental
		9.2.1 Materials
		9.2.2 Instrumentation
		9.2.3 Methods
			9.2.3.1 Synthesis of N-glycyl-β-glycopyranosylamines
				Synthesis of N-glycyl-2-actamido-2-deoxy-β-d-glucopyranosylamine (N-Gly-GlcNAc)
				Synthesis of N-glycyl-4-O-β-d-galactopyranosyl-β-d-glucopyranosylamine (N-Gly-lactose)
			9.2.3.2 Synthesis of neoglycoconjugates and glyconanoparticles
				Carbohydrate-polymer ester bond formation: general procedure
				Carbohydrate-polymer amide bond formation: general procedure
				Synthesis of crosslinked glycoconjugates (CLGC-1 and -2, Scheme 9.3B): general procedure
				Synthesis of silver, or gold glyconanoparticles (Scheme 9.1)
			9.2.3.3 Lectins binding assays
				Dot-blotting
				UV-visible absorbance measurements
				Binding properties of crosslinked neoglycoconjugate sorbents
	9.3 Results and Discussion
		9.3.1 Synthesis of Neoglycoconjugates and Metal-Labeled Glyconanoparticles
		9.3.2 Characterization of Colloidal Neoglycoconjugates and Glyconanoparticles
		9.3.3 Silver (or Gold)-Labeled Neoglycoconjugate: Lectin Interactions Study
			9.3.3.1 Development of lectin sensors
			9.3.3.2 UV-visible absorbance spectroscopy
		9.3.4 Crosslinked Lectin Sorbents
	9.4 Conclusions
	Acknowledgment
	References
	Further Reading
10 Particulate systems of PLA and its copolymers
	10.1 Introduction
	10.2 Properties of Poly(Lactic Acid)
		10.2.1 Production of Poly(Lactic Acid)
		10.2.2 Unique Properties of Poly(Lactic Acid) and its Copolymers
		10.2.3 Biocompatibility and Safety of Poly(Lactic Acid)
	10.3 Micro- and Nanoparticulate Systems of Poly(Lactic Acid)
		10.3.1 Preparation Methods of Poly(Lactic Acid) Micro- and Nanoparticles
			10.3.1.1 Emulsion-based methods
				Emulsification–solvent evaporation
				Emulsification–solvent diffusion
				Emulsification–reverse salting out
			10.3.1.2 Nanoprecipitation method
			10.3.1.3 Dialysis
			10.3.1.4 Spray drying
			10.3.1.5 In situ method for particle formation
			10.3.1.6 Supercritical fluids technique
			10.3.1.7 Particle formation using template/mold
			10.3.1.8 Microfluidic technique
		10.3.2 Challenges With Particulate System
	10.4 Products Under Preclinical and Clinical Trial
	10.5 Products Under Clinical Use
	10.6 Advancements
		10.6.1 Vaccination
		10.6.2 Super Paramagnetic Iron Oxide Nanoparticles (SPIONS)
		10.6.3 Cellular Interaction
		10.6.4 Gene Transfection and Tissue Engineering
		10.6.5 Dental Engineering
		10.6.6 Active Targeting
		10.6.7 Pheroid System
	10.7 Conclusions
	10.8 Future Perspectives
	References
11 Polylactide: the polymer revolutionizing the biomedical field
	11.1 Introduction
	11.2 Polylactic Acid Synthesis
		11.2.1 Precursors
			11.2.1.1 Lactic acid
			11.2.1.2 Lactide
		11.2.2 Polylactic Acid Polymerization
			11.2.2.1 Condensation and coupling of lactic acid
	11.3 Polylactic Acid Modification
		11.3.1 Modification by High Energy Radiations and Peroxides
		11.3.2 Graft Copolymerization
	11.4 Physicochemical Properties of Polylactic Acid
		11.4.1 Rheological Properties
		11.4.2 Mechanical Properties
		11.4.3 Thermal Properties
		11.4.4 Biodegradation Properties
	11.5 Biomedical Applications of Polylactic Acid
		11.5.1 Tissue Engineering
		11.5.2 Drug Delivery With Polylactic Acid Particles
		11.5.3 Vaccine Delivery
		11.5.4 Tumor Treatment
		11.5.5 Immunization With Polylactic Acid Particles
		11.5.6 DNA and Gene Delivery
		11.5.7 Antigen Loading
		11.5.8 Protein Delivery
		11.5.9 Imaging and Diagnosis
	11.6 Conclusion
	References
	Further Reading
12 Poly(propylene fumarate)-based biocomposites for tissue engineering applications
	12.1 Introduction
	12.2 Poly(Propylene Fumarate): Synthesis, Properties, and Applications
		12.2.1 Synthesis
		12.2.2 Properties
		12.2.3 Applications
	12.3 Graphene Oxide: Structure, Synthesis, and Properties
		12.3.1 Structure
		12.3.2 Synthesis
		12.3.3 Properties
	12.4 Boron Nitride Nanotubes: Structure, Synthesis, and Properties
		12.4.1 Structure
		12.4.2 Synthesis
		12.4.3 Properties
	12.5 Preparation of PPF-Based Biocomposites
	12.6 Characterization of PPF-Based Bionanocomposites
		12.6.1 Morphology and Structure
		12.6.2 Hydrophilicity, Biodegradability, and Protein Adsorption
		12.6.3 Thermal Properties
		12.6.4 Mechanical Properties
		12.6.5 Antibacterial Properties
		12.6.6 Cytotoxicity
		12.6.7 Tribological Properties
	12.7 Conclusion and Future Perspectives
	Acknowledgement
	References
13 Diblock and triblock copolymers of polylactide and polyglycolide
	13.1 Introduction
		13.1.1 History of Polylactide
		13.1.2 History of Polyglycolide
		13.1.3 Synthesis of Diblock and Triblock Copolymers of Polylactide and Polyglycolide
		13.1.4 Characterization of Copolymers of Polylactide and Polyglycolide
			13.1.4.1 Structural composition analysis
			13.1.4.2 Aqueous solubility and injectability
			13.1.4.3 Phase transition
			13.1.4.4 Thermal properties
			13.1.4.5 Crystallization behavior
			13.1.4.6 Biocompatibility, cytotoxicity, and biodegradability
	13.2 Resorbable Thermosensitive Polymers
		13.2.1 Thermosensitive Polymer-Based Drug Delivery Systems
		13.2.2 Commercial and Investigational Examples
		13.2.3 Limitations of Thermosensitive Polymers
	13.3 Resorbable Nanoparticles
		13.3.1 Nanoparticle Preparation and Characterization Techniques
		13.3.2 Resorbable Nanoparticles-Based Drug Delivery Systems
		13.3.3 Commercial and Investigational Examples
		13.3.4 Limitations of Resorbable Polymeric Nanoparticles
	13.4 Conclusions and Future Perspectives
	References
14 Characteristics of polymeric materials used in medicine
	14.1 Introduction
	14.2 Applications of Biomaterials
	14.3 UHMWPE Behavior Under the Action of External Factors
	14.4 Behavior of Medical Grade UHMWPE in Living Tissue
	14.5 UHMWPE Versus Other Biomaterials
	14.6 Background on Biopolymers in Living Tissue
	14.7 Present and Future of Biopolymers, Bioplastics, and Nanobiomaterials
	14.8 Conclusions
	References
	Further Reading
15 Application of polymethylmethacrylate, acrylic, and silicone in ophthalmology
	15.1 Introduction
		15.1.1 Silicone
		15.1.2 Polymethylmethacrylate
			15.1.2.1 Properties and advantages of polymethylmethacrylate
	15.2 Application of Biomaterials in Intraocular Lenses
		15.2.1 Lenses Used in Cataract Surgery
		15.2.2 Phakic Lenses
		15.2.3 Intraocular Lens Structure
		15.2.4 Implant Positions for Intraocular Lenses
		15.2.5 The Properties of Intraocular Lens Materials
			15.2.5.1 Intraocular lens materials
				Acrylic
				Poly methyl methacrylate
				Foldable hydrophobic acrylic
				Foldable hydrophilic acrylic (hydrogel)
				Silicone
				Collamer
		15.2.6 The Effect of Different Intraocular Lens Materials on Postoperative Complications
			15.2.6.1 Posterior capsular opacification
			15.2.6.2 Glistenings
			15.2.6.3 Calcification
		15.2.7 The Effect of Different Intraocular Lens Materials on the Quality of Vision in Pseudophakic Eyes
		15.2.8 Different Intraocular Lenses Materials in Congenital Cataract Surgery in Children
		15.2.9 Elimination of UV and Blue Rays From Intraocular Lenses
	15.3 Artificial Cornea
		15.3.1 History and Development of Keratoprosthesis
		15.3.2 Boston Keratoprosthesis
			15.3.2.1 Improvements over time
			15.3.2.2 Outcomes of boston type-1 KPro
			15.3.2.3 B-KPro type II
		15.3.3 Osteo-Odonto-Keratoprosthesis
		15.3.4 Cardona Keratoprosthesis
		15.3.5 Pintucci Biointegrable Keratoprosthesis
		15.3.6 KeraKlear (Keramed)
		15.3.7 Moscow Eye Microsurgery Complex in Russia
		15.3.8 What Next?
		15.3.9 Recent Trends
	15.4 Glaucoma Drainage Devices
		15.4.1 Historical Perspective
		15.4.2 Fundamental Principles of Glaucoma Drainage Devices
		15.4.3 Types of Glaucoma Drainage Devices
			15.4.3.1 Ahmed glaucoma valve
			15.4.3.2 Baerveldt glaucoma implants
			15.4.3.3 Molteno
			15.4.3.4 Krupin slit valve
			15.4.3.5 Ex-PRESS mini glaucoma shunt: Ex-PRESS glaucoma filtration device
	15.5 Intracorneal Rings
		15.5.1 Intacs Segments
		15.5.2 Ferrara Ring Segments
		15.5.3 Bisantis Intrastromal Segmented Perioptic Implants
		15.5.4 MyoRing
		15.5.5 KeraRing
	References
Index
Back Cover




نظرات کاربران