ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Materials for Biomedical Engineering: Nanobiomaterials in Tissue Engineering

دانلود کتاب مواد برای مهندسی زیست پزشکی: نانو زیست مواد در مهندسی بافت

Materials for Biomedical Engineering: Nanobiomaterials in Tissue Engineering

مشخصات کتاب

Materials for Biomedical Engineering: Nanobiomaterials in Tissue Engineering

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128169095, 9780128169094 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 499 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Materials for Biomedical Engineering: Nanobiomaterials in Tissue Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد برای مهندسی زیست پزشکی: نانو زیست مواد در مهندسی بافت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد برای مهندسی زیست پزشکی: نانو زیست مواد در مهندسی بافت



مواد برای مهندسی زیست پزشکی: نانوبیومواد در مهندسی بافت بر تاثیر مواد زیست فعال جدید در هر دو کاربرد فعلی و پتانسیل آنها در پیشرفت آینده مهندسی بافت و پزشکی بازساختی تاکید می کند. مهندسی بافت یک زمینه زیست پزشکی به خوبی بررسی شده و چالش برانگیز است، با چشم اندازهای امیدوارکننده برای بهبود و حمایت از کیفیت زندگی در بیماران مبتلا. این کتاب آخرین یافته های تحقیقاتی در مورد طراحی و تطبیق پذیری مواد زیست فعال و پتانسیل آنها در مهندسی بافت را گرد هم می آورد. علاوه بر این، پیشرفت های اخیر در مهندسی بافت نرم و سخت در فصل های کتاب ارائه شده است.


توضیحاتی درمورد کتاب به خارجی

Materials for Biomedical Engineering: Nanobiomaterials in Tissue Engineering highlights the impact of novel bioactive materials in both current applications and their potential in the future progress of tissue engineering and regenerative medicine. Tissue engineering is a well investigated and challenging bio-medical field, with promising perspectives to improve and support the quality of life in diseased patients. This book brings together the latest research findings regarding the design and versatility of bioactive materials and their potential in tissue engineering. In addition, recent progress in soft and hard tissue engineering is presented within the chapters of the book.



فهرست مطالب

Cover
Nanobiomaterials in Tissue Engineering
Copyright
List of Contributors
Series Preface
Preface
1 Nanobiomaterials for tissue engineering
	1.1 Introduction
	1.2 Applications of Nanoengineered Scaffolds in Regenerative Medicine
	1.3 Nanostructured Polymers as Tissue Engineering Scaffolds
		1.3.1 Natural and Synthetic Polymers
		1.3.2 Blended Polymers for Smart Hybrid Scaffold Fabrication
		1.3.3 Other Nanostrategies Combined With Polymeric Scaffolds
	1.4 DNA Nanotechnology, a Promising Approach in Tissue Engineering
	1.5 Conclusions and Further Perspectives
	References
	Further Reading
2 Resorbable biomaterials: role of chitosan as a graft in bone tissue engineering
	2.1 Introduction
	2.2 Properties of Substitutes to Act as Bone Grafts
		2.2.1 Biocompatibility
		2.2.2 Porosity
		2.2.3 Pore Size
		2.2.4 Surface Properties
		2.2.5 Osteoinduction
		2.2.6 Mechanical Stability and Biodegradability
	2.3 Chitosan-Based Material for Bone Graft Substitutes
		2.3.1 Chitosan–Calcium Phosphate Based Substitutes
		2.3.2 Chitosan Hydroxyapatite Based Bone Graft Substitutes
		2.3.3 Chitosan-Alginate Scaffolds
		2.3.4 Chitosan Polylactic Acid Substitute
	2.4 Summary
	References
3 Novel twisted and coiled polymer artificial muscles for biomedical and robotics applications
	3.1 Introduction
		3.1.1 Description
		3.1.2 Fabrication of Basic Twisted and Coiled Polymer Muscles
		3.1.3 Structures and Working Principles of Twisted and Coiled Polymer Muscles
		3.1.4 Comparison With Other Soft Actuators
	3.2 Detailed Fabrication of the Twisted and Coiled Polymeric Muscles
		3.2.1 Twisting
		3.2.2 Coiling
		3.2.3 Annealing (Heat Treatment)
		3.2.4 Training
	3.3 Characteristics and Properties of Twisted and Coiled Polymer Muscles
		3.3.1 Strain and Force Measurement
		3.3.2 Force Measurement
		3.3.3 Frequency Measurement and Pulsed Actuation
		3.3.4 Microscopy
	3.4 Biomedical Applications of Twisted and Coiled Polymer
		3.4.1 Prosthetic Hands
		3.4.2 Orthotic Hand
		3.4.3 Fecal Incontinence Treatment
		3.4.4 Variable Stiffness Actuators
		3.4.5 Self-Healing Composites
		3.4.6 Medical Textiles
	3.5 Robotic Application of Twisted and Coiled Polymer
		3.5.1 Twisted and Coiled Polymer Muscle Embedded in Silicone
		3.5.2 Artificial Musculoskeletal Systems
	Acknowledgment
	References
4 Electrospun nanofibers for tissue engineering applications
	4.1 Introduction
	4.2 The Electrospinning Process
		4.2.1 Multijets From a Single Needle
		4.2.2 Multijets From Multiple Needles
		4.2.3 Multijets From Needleless Systems
		4.2.4 Melt Electrospinning
	4.3 Electrospinning for Tissue Engineering
		4.3.1 Bones, Cartilage, and Tendon Tissue Regeneration
		4.3.2 Skin Tissue Regeneration
		4.3.3 Other Tissue Engineering Application of Electrospun Nanofibers
	4.4 Conclusions
	References
5 Recent advances of chitosan composites in artificial skin: the next era for potential biomedical application
	5.1 Introduction
	5.2 Anatomy of Skin
		5.2.1 Subcutaneous Layer
		5.2.2 Dermis
		5.2.3 Epidermis
	5.3 Chitosan Composites
		5.3.1 Chitosan Composites as Sponges
		5.3.2 Chitosan Composites as Hydrogels
		5.3.3 Chitosan Composites as Nanofibers
		5.3.4 Chitosan Composites as Conductive Membrane/Films
	5.4 Characterization
		5.4.1 Pore Size and Porosity
		5.4.2 Mechanical Strength
		5.4.3 Biocompatibility
	5.5 Wound Healing Models Studied for Chitosan Composites
		5.5.1 In Vivo Models
			5.5.1.1 Full thickness wound model
			5.5.1.2 Split thickness model
	5.6 Challenges
	5.7 Future Perspectives
	References
6 Resorbable polymer fiber reinforced composites in biomedical application
	6.1 Introduction
	6.2 Biocomposites
	6.3 Biocomposites Prepared by Using Resorbable Polymeric Fibers
		6.3.1 Polylactide
			6.3.1.1 Biodegradation of polylactic acid
			6.3.1.2 Medical applications of polylactic acid composites
				Tissue engineering
				Wound management
				Drug delivery system
				Orthopedic system
			6.3.1.3 Polylactide based microcomposites using different reinforcing materials
			6.3.1.4 Polylactide based nanocomposites using different reinforcing materials
		6.3.2 Collagen
		6.3.3 Silk
	6.4 Patent Literature on Biocomposites
	6.5 Recent Advances and Future Prospects
	6.6 Conclusion
	References
7 Possibilities and perspectives of chitosan scaffolds and composites for tissue engineering
	7.1 Introduction
	7.2 Scaffold
	7.3 Chitosan
	7.4 Chitosan as Biomaterial: Properties
		7.4.1 Mucoadhesive
		7.4.2 Hemostatic
		7.4.3 Antimicrobial
		7.4.4 Biodegradable
		7.4.5 Biocompatible
	7.5 Chitosan Scaffold
		7.5.1 Chitosan Hydrogel
			7.5.1.1 Physical association network
			7.5.1.2 Cross-linked networks
		7.5.2 Chitosan Sponges
		7.5.3 Chitosan Films
		7.5.4 Chitosan Nanofibers
		7.5.5 Chitosan Nanocomposite
	7.6 Applications of Chitosan Scaffolds
		7.6.1 Tissue Engineering
			7.6.1.1 Cartilage tissue engineering
			7.6.1.2 Bone tissue engineering
			7.6.1.3 Liver tissue engineering
			7.6.1.4 Nerve tissue engineering
		7.6.2 Wound Healing
		7.6.3 Drug Delivery
		7.6.4 Gene Therapy
	7.7 Conclusions
	References
8 Hydroxyapatite: an inorganic ceramic for biomedical applications
	8.1 Introduction
	8.2 Basic Structure of Calcium Hydroxyapatite
	8.3 Synthesis Routes of Hydroxyapatite
		8.3.1 Physical Method
			8.3.1.1 Solid state method
			8.3.1.2 Mechanochemical technique
		8.3.2 Chemical Methods
			8.3.2.1 Chemical precipitation method
			8.3.2.2 Sol–gel method
			8.3.2.3 Hydrothermal/solvothermal method
			8.3.2.4 Emulsion technique
			8.3.2.5 Sonochemical technique
		8.3.3 Biomimetic Techniques
	8.4 Characterizations of Hydroxyapatite
		8.4.1 X-Ray Powder Diffraction
		8.4.2 Raman Spectroscopy
		8.4.3 Fourier Transform Infrared Spectroscopy
		8.4.4 Mechanical Characterization of Hydroxyapatite
	8.5 Bioactivity of Hydroxyapatite
		8.5.1 Cellular Mechanism at Bone–Material Interface
		8.5.2 Resorption of Hydroxyapatite
	8.6 Role of Elemental Doping in Hydroxyapatite
		8.6.1 Lithium-Doped Hydroxyapatite
		8.6.2 Selenium-Doped Hydroxyapatite
		8.6.3 Aluminum-Doped Hydroxyapatite
		8.6.4 Zirconium-Doped Hydroxyapatite
		8.6.5 Silver-Doped Hydroxyapatite
		8.6.6 Magnesium-Doped Hydroxyapatite
		8.6.7 Manganese-Doped Hydroxyapatite
		8.6.8 Iron-Doped Hydroxyapatite
		8.6.9 Zinc-Doped Hydroxyapatite
		8.6.10 Anion-Doped Hydroxyapatite
	8.7 Applications of Hydroxyapatite
		8.7.1 Hydroxyapatite as a Drug Delivery Vehicle for Antibiotics in Bone Infection
			8.7.1.1 Drug release kinetics
		8.7.2 Hydroxyapatite in Dental Applications
			8.7.2.1 Enamel restoration
			8.7.2.2 Dental fillers
			8.7.2.3 Dental implants
		8.7.3 Hydroxyapatite and Stem Cell Differentiation
			8.7.3.1 Types of stem cells
				8.7.3.1.1 Embryonic stem cells
				8.7.3.1.2 Adult stem cells
				8.7.3.1.3 Mesenchymal stem cells
			8.7.3.2 Hydroxyapatite interaction with stem cells
			8.7.3.3 Mechanism of osteoblast differentiation of mesenchymal stem cells in presence of hydroxyapatite
		8.7.4 Hydroxyapatite in the Treatment of Osteomyelitis
		8.7.5 Hydroxyapatite as Coating Material
	8.8 Challenges and Limitations of Hydroxyapatite
		8.8.1 Complications of Hydroxyapatite
	8.9 Conclusion
	References
9 Mechanical behavior of hydroxyapatite-based dental resin composites
	9.1 Introduction
	9.2 Dental Composites
		9.2.1 Resin Matrix for Dental Composites
		9.2.2 Polymerization Process
		9.2.3 Filler Typologies
	9.3 HA Filler as a New Challenge for Restorative Dentistry
		9.3.1 Hydroxyapatite Crystal Morphologies
			9.3.1.1 Spheroidal particles
			9.3.1.2 Whiskers
			9.3.1.3 Fibers
			9.3.1.4 Urchin-like
		9.3.2 Chemicophysical Properties of HA-Based Composite
		9.3.3 Degree of Conversion
		9.3.4 Shrinkage
		9.3.5 Optical Properties
		9.3.6 Sorption/Solubility in Water
		9.3.7 Mechanical Properties of HA-Based Resin Composite for Restorative Dentistry
		9.3.8 Biocompatibility Issues
	9.4 Concluding Remarks and Future Trends
	References
10 Molecular study of simulated body fluid and temperature on polyurethane/graphene polymeric nanocomposites: calcium carbo...
	10.1 Introduction
		10.1.1 Polymers
			10.1.1.1 Polyurethane
				10.1.1.1.1 Polyurethane properties
				10.1.1.1.2 Polyurethane applications
			10.1.1.2 Polymethyl methacrylate
				10.1.1.2.1 Polymethyl methacrylate properties
			10.1.1.3 Graphene
				10.1.1.3.1 Graphene properties
			10.1.1.4 Calcium carbonate
				10.1.1.4.1 Calcium carbonate properties
		10.1.2 Prosthesis
			10.1.2.1 Materials
				10.1.2.1.1 Metals
				10.1.2.1.2 Ceramics
				10.1.2.1.3 Polymers
		10.1.3 Simulated Body Fluid
		10.1.4 Computational Chemistry
			10.1.4.1 Molecular mechanics
			10.1.4.2 Quantum mechanics
			10.1.4.3 Monte Carlo
		10.1.5 Molecular Properties
			10.1.5.1 Molecular energy
			10.1.5.2 Optimization geometry
			10.1.5.3 Quantitative structure–activity relationships properties
				10.1.5.3.1 Partition coefficient (log P)
			10.1.5.4 Fourier-transform infrared spectroscopy
			10.1.5.5 Electrostatic potential maps
	10.2 Methodology
		10.2.1 Fourier-Transform Infrared Spectroscopy Analysis
		10.2.2 Electrostatic Potential Map
		10.2.3 Determination of the Effect of Temperature on the Nanocomposite
		10.2.4 Simulated Body Fluid Characterization
			10.2.4.1 Determination of the effect of temperature and SBF on the nanocomposite
	10.3 Results
		10.3.1 Polyurethane/Graphene/Polymethyl Methacrylate Nanocomposite
			10.3.1.1 Optimization geometry and partition coefficient
			10.3.1.2 Fourier-transform infrared spectroscopy
			10.3.1.3 Electrostatic potential map
		10.3.2 Polyurethane/Graphene/Calcium Carbonate Nanocomposite
			10.3.2.1 Optimization geometry, minimum energy, and partition coefficient
			10.3.2.2 Fourier-transform infrared spectroscopy
			10.3.2.3 Electrostatic potential map
	10.4 Conclusions
	References
11 New insights into nanohydroxyapatite/chitosan nanocomposites for bone tissue regeneration
	11.1 Introduction
	11.2 Overview of Bone Biology
	11.3 The Ideal Bone Graft
		11.3.1 Biocompatibility
		11.3.2 Biodegradability
		11.3.3 Mechanical Properties
		11.3.4 Structural Requirements
		11.3.5 Manufacturing Technology
	11.4 Overview of Commercially Available Bone Grafts
	11.5 Hydroxyapatite as a Biomaterial for Bone Regeneration
	11.6 Chitosan as a Biomaterial for Bone Regeneration
	11.7 Hydroxyapatite/Chitosan Nanocomposite Materials
	11.8 Preparation of Hydroxyapatite/Chitosan Microparticles
	11.9 Preparation of Hydroxyapatite/Chitosan Scaffolds
	11.10 Hydroxyapatite/Chitosan Nanocomposite Materials Sterilization
	11.11 Conclusions
	References
12 Production of polymer–bioactive glass nanocomposites for bone repair and substitution
	12.1 Introduction
	12.2 Bioactive Glass
		12.2.1 Silicate-Based Bioactive Glass
		12.2.2 Phosphate-Based Bioactive Glass
		12.2.3 Borate-Based Bioactive Glass
		12.2.4 Fabrication of Bioactive Glass Scaffolds
			12.2.4.1 Mechanical Properties
	12.3 Natural and Synthetic Polymer–Bioactive Glass Composites
	12.4 Composite Production Techniques
		12.4.1 Electrospinning
		12.4.2 Microspheres
		12.4.3 Solvent Casting–Particulate Leaching
		12.4.4 Freeze-Drying
		12.4.5 3D Printing
	12.5 Conclusions
	Acknowledgments
	References
13 Bioactive glass–based composites in bone tissue engineering: synthesis, processing, and cellular responses
	13.1 Introduction
		13.1.1 Bone: A Natural Composite
		13.1.2 Bone Tissue Engineering
			13.1.2.1 Requirements for bone implant materials
		13.1.3 Bioactive Glasses for Bone Tissue Engineering
	13.2 Bioactive Glasses: Composition and Properties
		13.2.1 Type of Bioactive Glasses
			13.2.1.1 Silicate-bioactive glasses
			13.2.1.2 Borate/borosilicate-bioactive glasses
			13.2.1.3 Phosphate-bioactive glasses
			13.2.1.4 Doped-bioactive glasses
			13.2.1.5 Metallic-bioactive glasses
		13.2.2 Response of Bioactive Glasses to Cells
		13.2.3 Antibacterial Effect of Bioactive Glasses
	13.3 Synthesis of Bioactive Glasses
		13.3.1 Sol–Gel Method
		13.3.2 Microemulsion Method
		13.3.3 Flame-Spray Method
		13.3.4 Laser-Spinning Method
	13.4 Surface Modification of Bioactive Glasses
	13.5 Processing of Bioactive Glasses–Based Scaffolds
		13.5.1 Melt-Derived Processing
		13.5.2 Sol–Gel Processing
		13.5.3 Polymer-Foam Replication
		13.5.4 Freeze-Casting and Freeze-Drying Process
		13.5.5 Electrospinning Process
		13.5.6 Rapid Prototyping Process
	13.6 Composites for Bone Tissue Engineering Applications
		13.6.1 Bioactive Glasses–Based Composite Scaffolds
		13.6.2 Natural Polymer/Bioactive Glasses–Based Composite Scaffolds
		13.6.3 Synthetic Polymer/Bioactive Glasses–Based Composite Scaffolds
		13.6.4 Mixed Natural and Synthetic Polymers/Bioactive Glasses–Based Composite Scaffolds
	13.7 Conclusion, Major Challenges, and Future Perspective
	Acknowledgments
	References
14 Mechanical and wear properties of nano titanium based dental composite resin
	14.1 Introduction
		14.1.1 Polymethylmethacrylates: A Prominent Denture Matrix
		14.1.2 Nanofillers
			14.1.2.1 Metal and metal oxide filler
			14.1.2.2 Fiber filler
		14.1.3 Recent Scenario of Nanofiller-Based Polymethyl Methacrylate Composite for Dentist
			14.1.3.1 Mechanical properties
			14.1.3.2 Wear properties
	14.2 Experimental
		14.2.1 Materials
		14.2.2 Preparation of Ti/Polymethyl Methacrylate Composite
		14.2.3 Characterization
	14.3 Results and Discussion
		14.3.1 Mechanical Analysis
			14.3.1.1 Tensile test
			14.3.1.2 Wear test
		14.3.2 Morphological Analysis
		14.3.3 Thermal Analysis
	14.4 Conclusion
	Acknowledgments
	References
15 In vitro and in vivo technologies: an up to date overview in tissue engineering
	15.1 Introduction
	15.2 In Vitro Tissue Engineering Technologies for Cancer Research
		15.2.1 3D Cell Cultures
			15.2.1.1 Liquid methods
			15.2.1.2 Scaffolds
		15.2.2 Bioprinting
		15.2.3 Microchips and Microfluidics
	15.3 In Vivo Tissue Engineering Technologies for Cancer Research
	15.4 Conclusions and Perspectives
	Acknowledgments
	References
Index
Back Cover




نظرات کاربران