ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures

دانلود کتاب مواد برای مهندسی زیست پزشکی: ریز و نانوساختارهای معدنی

Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures

مشخصات کتاب

Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0081028148, 9780081028148 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 494 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 30 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد برای مهندسی زیست پزشکی: ریز و نانوساختارهای معدنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد برای مهندسی زیست پزشکی: ریز و نانوساختارهای معدنی



مواد برای مهندسی زیست پزشکی: میکرو و نانوساختارهای معدنی بینش‌های اخیر و خاص در پیشرفت جدید را همراه با دیدگاه‌های جدید برای ذرات میکرو و نانو معدنی ارائه می‌دهد. تمرکز اصلی این کتاب بر روی کاربردهای زیست پزشکی این مواد و چگونگی ارتباط خواص بیولوژیکی آنها با روش های مختلف سنتز و منبع مواد اولیه آنها است. اطلاعات اخیر در مورد روش های سنتز بهینه برای به دست آوردن نانو و ریزذرات بهبود یافته برای استفاده در پزشکی، و همچنین مهم ترین کاربردهای زیست پزشکی این مواد، مانند تشخیص و درمان سرطان، با جزئیات برجسته شده است.


توضیحاتی درمورد کتاب به خارجی

Materials for Biomedical Engineering: Inorganic Micro- and Nanostructures presents recent, specific insights in new progress, along with new perspectives for inorganic micro- and nano-particles. The main focus of this book is on biomedical applications of these materials and how their biological properties are linked to various synthesis methods and their source of raw materials. Recent information regarding optimized synthesis methods to obtain improved nano- and microparticles for biomedical use, as well as the most important biomedical applications of these materials, such as the diagnosis and therapy of cancer, are highlighted in detail.



فهرست مطالب

Cover
Materials for Biomedical Engineering:
Inorganic Micro- and Nanostructures
Copyright
List of Contributors
Series Preface
Preface
1 Biomedical inorganic nanoparticles: preparation, properties, and perspectives
	1.1 Introduction
	1.2 Gold Nanoparticles
	1.3 Silver Nanoparticles
	1.4 Selenium Nanoparticles
	1.5 Copper Nanoparticles
	1.6 Iron Nanoparticles
	1.7 Zinc Oxide Nanoparticles
	1.8 Hydroxyapatite Nanoparticles
	1.9 Conclusions
	Acknowledgments
	References
	Further Reading
2 Inorganic composites in biomedical engineering
	2.1 Introduction and Background
	2.2 Categorization
	2.3 Components
		2.3.1 Matrices
		2.3.2 Fibers
		2.3.3 Particles
		2.3.4 Interface
	2.4 Preparation of Composites
		2.4.1 Composites Based on Polymer Matrix
		2.4.2 Composites Based on Ceramic Matrix
	2.5 Properties of Composites
	2.6 Anomalies
		2.6.1 Fracture and Fatigue Failure
	2.7 Biological Response
	2.8 Applications in Biomedical Engineering
		2.8.1 Dentistry
		2.8.2 Prosthetics and Orthotics
		2.8.3 Tissue Engineering
		2.8.4 Orthopedic
	2.9 Conclusions
	References
	Further Reading
3 Structural interpretation, microstructure characterization, mechanical properties, and cytocompatibility study of pure an...
	3.1 Introduction
		3.1.1 Carbonation in Biological Apatites
		3.1.2 Importance of Zn, Mn, and Mg as Trace Elements Present in Bone
	3.2 Materials and Methods
		3.2.1 Mechanical Alloying
		3.2.2 Sample Preparation by MA
		3.2.3 Spark Plasma Sintering
		3.2.4 Sample Characterization
		3.2.5 Biological Studies
			3.2.5.1 Cell culture
			3.2.5.2 MTT assay
		3.2.6 Method of Analysis
			3.2.6.1 Microstructural analysis
			3.2.6.2 Physical and mechanical property measurement
	3.3 Results and Discussions
		3.3.1 Phase Confirmation of Unsintered HAp Samples From XRD Patterns
		3.3.2 Confirmation of Carbonation in HAp by FTIR Analysis
		3.3.3 Quantitative Phase Estimation of Unsintered Samples Using Rietveld’s Method
		3.3.4 Modification in HAp Structure due to Mn/Mg/Zn Substitution
		3.3.5 HRTEM Analysis
		3.3.6 Microstructure Characterizations of the Spark Plasma Sintered Samples
		3.3.7 Mechanical Properties of the Sintered HAp Samples
		3.3.8 Cytocompatibility Test
	3.4 Conclusions
	References
4 Multiparticle composites based on nanostructurized arsenic sulfides As4S4 in biomedical engineering
	4.1 Introduction
	4.2 As4S4/ZnS NC Preparation Procedure
		4.2.1 Mechanochemical Synthesis of As4S4/ZnS NCs in a Dry-Milling Mode
		4.2.2 Mechanochemical Synthesis of As4S4/ZnS-PX407 NSs in a Wet-Milling Mode
	4.3 As4S4/ZnS NC Characterization Methodology
		4.3.1 Atomic-Relevant Structure
		4.3.2 Atomic-Deficient Structure
		4.3.3 Biological Activity
	4.4 NP-Guided Functionality in As4S4/ZnS NCs
		4.4.1 Characterization of As4S4/ZnS NCs Prepared in a Dry-Milling Mode
		4.4.2 Atomic-Deficient Structure of As4S4/ZnS NCs
			4.4.2.1 Expected channels of mixed positron-Ps trapping in NP-based composites
			4.4.2.2 Compositional evolution of FVEs in As4S4/ZnS NCs
		4.4.3 Characterization of As4S4/ZnS-PX407 NSs Prepared in a Wet-Milling Mode
		4.4.4 Biological Activity of As4S4/ZnS NPs
			4.4.4.1 Dissolution of As from mixed As4S4/ZnS NPs
			4.4.4.2 In vitro anticancer functionality of As4S4/ZnS-PX407 NSs
	4.5 Conclusions
	References
5 Quaternary ammonium compound derivatives for biomedical applications
	5.1 Background
	5.2 Biofilm Treatment and Prevention
	5.3 Quaternary Ammonium Compounds and Their Chemistry
		5.3.1 Cationic Acrylates and Cationic Silanes
		5.3.2 Quaternary Ammonium Compound Disinfectants and Preservatives
		5.3.3 In Situ Quaternization of Tertiary Amines to Form Quaternary Ammonium Compounds and Nanoparticle Functionalization
	5.4 Variables Influencing the Antimicrobial Properties of Quaternary Ammonium Compound
	5.5 Cytotoxicity
	5.6 Antimicrobial Resistance
	5.7 Remarks
	References
6 Block copolymer micelles as nanoreactors for the synthesis of gold nanoparticles
	6.1 Introduction
		6.1.1 Poloxamers and Poloxamines
		6.1.2 Micelle Architecture and Mixed Micelles
		6.1.3 Synthesis of Various Morphologies of Gold Nanoparticles
			6.1.3.1 Icosahedral gold nanoparticles
			6.1.3.2 Nanoplates
		6.1.4 Bimetallic Nanoparticles
		6.1.5 Comparison of Poloxamers and Poloxamines
	6.2 Biomedical Applications
	6.3 Study Results
	6.4 Future Perspectives
	References
	Further Reading
7 Nanoparticles: synthesis and applications
	7.1 Introduction
	7.2 Synthesis of Nanoparticles
		7.2.1 Chemical Reduction
		7.2.2 Coprecipitation
		7.2.3 Seeding
		7.2.4 Microemulsion and Inverse Microemulsion
		7.2.5 Hydrothermal Method
		7.2.6 Sonoelectrodeposition
	7.3 Functionalization/Coating of Nanoparticles
		7.3.1 Functionalization of Nanoparticles
		7.3.2 Silica Coating of Magnetic Nanoparticles
		7.3.3 Multifunctional Nanoparticles
	7.4 Applications
		7.4.1 Application of Gold Nanoparticles for Breast Cancer Cell Detection
		7.4.2 Basal Cell Carcinoma Fingerprinted Detection
		7.4.3 Antibacterial Test Using Silver Nanoparticles
		7.4.4 Magnetic Nanoparticles
			7.4.4.1 Arsenic removal from water
			7.4.4.2 Herpes DNA separation
			7.4.4.3 CD4+ cell separation
			7.4.4.4 Detection of pathogenic viruses
			7.4.4.5 Specific and rapid tuberculosis detection
			7.4.4.6 Biological treatment targeting Mycobacterium tuberculosis in contaminated wastewater
		7.4.5 Applications of Multifunctional Nanoparticles
	7.5 Conclusion and Perspectives
	Acknowledgment
	References
8 Multimodal magnetic nanoparticles for biomedical applications: importance of characterization on biomimetic in vitro models
	8.1 Introduction
	8.2 Characterization of Multimodal Magnetic Nanoparticles
		8.2.1 Properties of Magnetic Nanoparticles
		8.2.2 Magnetic Nanoparticle Properties Change in Physiological Fluids
		8.2.3 Methods for Characterization of Physicochemical Properties of Magnetic Nanoparticles
		8.2.4 Characterization of Magnetic Nanoparticle Mobility in 3D Gels and in the Artificial Extracellular Matrix
	8.3 Current Biomedical Applications of Multimodal Magnetic Nanoparticles
		8.3.1 Molecular Isolation and Magnetic Separation
		8.3.2 Magnetic Nanoparticles as Delivery Vectors
		8.3.3 Cell Labeling
		8.3.4 Magnetic Nanoparticles as Contrast Agents for Magnetic Resonance
		8.3.5 Magnetofection
		8.3.6 Magnetic Fluid Hyperthermia
		8.3.7 Perspectives of Magnetic Nanoparticle Biomedical Applications
	8.4 Endocytosis and Intracellular Fate of Multimodal Magnetic Nanoparticles
		8.4.1 Different Endocytic Pathways
		8.4.2 Uptake Pathway Depends Mainly on the Properties of Nanoparticles and the Cell Type
		8.4.3 The Intracellular Trafficking and Fate of Internalized Nanoparticles
		8.4.4 Endocytosis of Magnetic Nanoparticles Is an Essential Step for Most Biomedical Applications
	8.5 In Vivo and In Vitro Models (Classical Cell Cultures, Biomimetic) for Testing Nanoparticle Toxicity and Their Penetrati...
		8.5.1 The Comparison of In Vivo and In Vitro Models for the Research Into Magnetic Nanoparticle Effects
		8.5.2 The Routes and Model Organisms of Magnetic Nanoparticle Administration
		8.5.3 Biomimetic In Vitro Models Represent the Bridge Between In Vitro and In Vivo Research
	8.6 Advantages, Perspectives, and Limitations of Biomimetic In Vitro Models Versus Classical Cell Cultures
		8.6.1 Skin Models
		8.6.2 Lung Models
		8.6.3 Gastrointestinal Tract Models
		8.6.4 Placenta Models
		8.6.5 Urothelium/Urinary Bladder Models
		8.6.6 Perspectives of Biomimetic In Vitro Models
	8.7 Conclusions
	Acknowledgments
	References
9 Aluminosilicate-based composites functionalized with cationic materials: possibilities for drug-delivery applications
	9.1 Introduction
	9.2 Aluminosilicates as Drug Carriers—Properties, Advantages, and Limitations
	9.3 Aluminosilicate-Based Drug Carriers Functionalized With Cationic Surfactants
		9.3.1 Cationic Surfactants—Properties and Pharmaceutical Applications
			9.3.1.1 Physicochemical properties of cationic surfactants
			9.3.1.2 Pharmaceutical application of cationic surfactants
		9.3.2 Preparation and Characterization of Surfactant-Modified Aluminosilicates
		9.3.3 Functionality of Surfactant-Modified Aluminosilicates as Drug Carriers
	9.4 Chitosan-Functionalized Aluminosilicates as Drug Carriers
		9.4.1 Chitosan—A Versatile Biopolymer
			9.4.1.1 Physical and chemical properties of chitosan
			9.4.1.2 Safety and regulatory status of chitosan
		9.4.2 Preparation and Characterization of Chitosan-Modified Aluminosilicates
		9.4.3 Functionality of Chitosan–Aluminosilicate Composites as Drug Carriers
	9.5 Conclusions
	Acknowledgment
	References
10 Bioactive glass nanofibers for tissue engineering
	10.1 Introduction
		10.1.1 Definition of Nanofiber
		10.1.2 Interest in Bioactive Glass Nanofibers in Tissue Engineering (Scaffolds and Composites)
	10.2 Conventional Methods to Produce Glass Microfibers
	10.3 Methods to Produce Glass Nanofibers
		10.3.1 Bottom-Up Methods
		10.3.2 Top-Down Methods
			10.3.2.1 Rotary jet spinning
			10.3.2.2 Electrospinning
	10.4 Bioactive Glass Fibers for Tissue Engineering and Composites
	10.5 Production of Glass Nanofibers by Laser Spinning Technique
		10.5.1 Bioactive Glass Nanofibers for Tissue Engineering and Composites
	10.6 Summary and Outlook
	Acknowledgment
	References
11 Application of (mixed) metal oxides-based nanocomposites for biosensors
	11.1 Introduction
		11.1.1 Semiconducting (Nano)Materials
		11.1.2 Polymers
		11.1.3 Nanocomposites/Particles
	11.2 Sensors and Biosensors
		11.2.1 Sensing Measurement
	11.3 Application of Sensors
		11.3.1 Gas (Bio)Sensors
			11.3.1.1 NOx
			11.3.1.2 Ethanol
			11.3.1.3 Oxygen
			11.3.1.4 Water (humidity)
		11.3.2 Chemical (Bio)Sensors
			11.3.2.1 Drugs
		11.3.3 Environment Biosensors
			11.3.3.1 Heavy metals
			11.3.3.2 Pesticide and dust
		11.3.4 Biological Sensors
			11.3.4.1 DNA
			11.3.4.2 Protein
		11.3.5 Clinical Biosensors
			11.3.5.1 Glucose
			11.3.5.2 Cholesterol
			11.3.5.3 Urea
			11.3.5.4 Immunology
	11.4 Fabrication
	11.5 Selectivity, Sensitivity, and Time Factors
	11.6 Summary and Recommendations for Future Work
	References
	Further Reading
12 Metal nanoparticles and their composites: a promising multifunctional nanomaterial for biomedical and related applications
	12.1 Introduction
	12.2 Some Interesting Properties of the Metals on the Nanometer Length Scale
	12.3 Nanoparticle Synthesis and Functionalization
		12.3.1 Synthesis Approaches to Metal Nanoparticles
		12.3.2 Functionalization of Metal Nanoparticles: Manipulation of Nanoparticles Properties
	12.4 Applications of Metal Nanoparticles and Their Polymer-Based Nanocomposites
		12.4.1 Medical Applications
			12.4.1.1 Cancer immunotherapy/drug delivery
			12.4.1.2 Imaging of tissues and cells/nanoparticles in diagnostics
		12.4.2 Applications in Biology
			12.4.2.1 Fluorescent biological labeling
			12.4.2.2 Biodetection of proteins
			12.4.2.3 Biosensing applications
			12.4.2.4 Antimicrobial testing
	12.5 Conclusions and Outlook
	Acknowledgments
	References
13 Hybrid metal complex nanocomposites for targeted cancer diagnosis and therapeutics
	13.1 Introduction
	13.2 Conventional Chemotherapy
	13.3 Striving Toward Targeted Chemotherapy
	13.4 Metal–Ligand Complexes as a Composite Anticancer Drug
		13.4.1 Iron Complexes
		13.4.2 Quantitative Structure–Function Relationship of Iron-Salen Complexes
		13.4.3 Magnetic Nanoparticles (MNPs) as an Essential Carrier for Magnetic DDS
		13.4.4 Molecular Magnetic Iron Complex for Magneto-DDS
			13.4.4.1 Synthesis of iron salen
			13.4.4.2 Design of magnetic iron salen
			13.4.4.3 Theoretical investigation of anticancer iron salen by first principles calculations
			13.4.4.4 Crystallographic analysis
			13.4.4.5 Purity analysis
			13.4.4.6 Anticancer properties
			13.4.4.7 Magnetic property
			13.4.4.8 Cancer hyperthermia
	13.5 Hybrid Metal Salen–Polymer Nanocomposites as Nano-DDS
	13.6 Conclusion
	References
14 Nanocoatings and thin films
	14.1 Introduction
	14.2 Nanocoating Fabrication Methods
		14.2.1 Dip-Coating Method
			14.2.1.1 Nanocoatings prepared by dip-coating
		14.2.2 Matrix-Assisted Pulsed Laser Evaporation Method
			14.2.2.1 Nanocoatings prepared by MAPLE
	14.3 Conclusion
	References
Index
Back Cover




نظرات کاربران