دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برنامه نویسی: زبان های برنامه نویسی ویرایش: 2 نویسندگان: Javier Fernández González سری: ISBN (شابک) : 1785887947, 9781785887949 ناشر: Packt Publishing سال نشر: 2017 تعداد صفحات: 507 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب تسلط بر برنامه نویسی همزمان با جاوا 9: جریان های واکنشی همزمان رشته جاوا
در صورت تبدیل فایل کتاب Mastering Concurrency Programming with Java 9 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تسلط بر برنامه نویسی همزمان با جاوا 9 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Copyright Credits About the Author About the Reviewer www.PacktPub.com Customer Feedback Table of Contents Preface Chapter 1: The First Step - Concurrency Design Principles Basic concurrency concepts Concurrency versus parallelism Synchronization Immutable object Atomic operations and variables Shared memory versus message passing Possible problems in concurrent applications Data race Deadlock Livelock Resource starvation Priority inversion A methodology to design concurrent algorithms The starting point - a sequential version of the algorithm Step 1 - analysis Step 2 - design Step 3 - implementation Step 4 - testing Step 5 - tuning Conclusion Java Concurrency API Basic concurrency classes Synchronization mechanisms Executors The fork/join framework Parallel streams Concurrent data structures Concurrency design patterns Signaling Rendezvous Mutex Multiplex Barrier Double-checked locking Read-write lock Thread pool Thread local storage Tips and tricks for designing concurrent algorithms Identifying the correct independent tasks Implementing concurrency at the highest possible level Taking scalability into account Using thread-safe APIs Never assume an execution order Preferring local thread variables over static and shared when possible Finding the easier parallelizable version of the algorithm Using immutable objects when possible Avoiding deadlocks by ordering the locks Using atomic variables instead of synchronization Holding locks for as short a time as possible Taking precautions using lazy initialization Avoiding the use of blocking operations inside a critical section Summary Chapter 2: Working with Basic Elements - Threads and Runnables Threads in Java Threads in Java - characteristics and states The Thread class and the Runnable interface First example: matrix multiplication Common classes Serial version Parallel versions First concurrent version - a thread per element Second concurrent version - a thread per row Third concurrent version - the number of threads is determined by the processors Comparing the solutions Second example - file search Common classes Serial version Concurrent version Comparing the solutions Summary Chapter 3: Managing Lots of Threads - Executors An introduction to executors Basic characteristics of executors Basic components of the Executor framework First example - the k-nearest neighbors algorithm k-nearest neighbors - serial version K-nearest neighbors - a fine-grained concurrent version k-nearest neighbors - a coarse-grained concurrent version Comparing the solutions Second example - concurrency in a client/server environment Client/server - serial version The DAO part The command part The server part Client/version - parallel version The server part The command part Extra components of the concurrent server The status command The cache system The log system Comparing the two solutions Other methods of interest Summary Chapter 4: Getting the Most from Executors Advanced characteristics of executors Cancellation of tasks Scheduling the execution of tasks Overriding the executor methods Changing some initialization parameters First example - an advanced server application The ServerExecutor class The statistics object The rejected task controller The executor tasks The executor The command classes The ConcurrentCommand class The concrete commands The server part The ConcurrentServer class The RequestTask class The client part Second example - executing periodic tasks The common parts The basic reader The advanced reader Additional information about executors Summary Chapter 5: Getting Data from Tasks - The Callable and Future Interfaces Introducing the Callable and Future interfaces The Callable interface The Future interface First example - a best-matching algorithm for words The common classes A best-matching algorithm - the serial version The BestMatchingSerialCalculation class The BestMachingSerialMain class A best-matching algorithm - the first concurrent version The BestMatchingBasicTask class The BestMatchingBasicConcurrentCalculation class A best-matching algorithm - the second concurrent version Word exists algorithm - a serial version The ExistSerialCalculation class The ExistSerialMain class Word exists algorithm - the concurrent version The ExistBasicTasks class The ExistBasicConcurrentCalculation class The ExistBasicConcurrentMain class Comparing the solutions Best-matching algorithms Exist algorithms The second example - creating an inverted index for a collection of documents Common classes The Document class The DocumentParser class The serial version The first concurrent version - a task per document The IndexingTask class The InvertedIndexTask class The ConcurrentIndexing class The second concurrent version - multiple documents per task The MultipleIndexingTask class The MultipleInvertedIndexTask class The MultipleConcurrentIndexing class Comparing the solutions Other methods of interest Summary Chapter 6: Running Tasks Divided into Phases - The Phaser Class An introduction to the Phaser class Registration and deregistration of participants Synchronizing phase change Other functionalities First example - a keyword extraction algorithm Common classes The Word class The Keyword class The Document class The DocumentParser class The serial version The concurrent version The KeywordExtractionTask class The ConcurrentKeywordExtraction class Comparing the two solutions The second example - a genetic algorithm Common classes The Individual class The GeneticOperators class The serial version The SerialGeneticAlgorithm class The SerialMain class The concurrent version The SharedData class The GeneticPhaser class The ConcurrentGeneticTask class The ConcurrentGeneticAlgorithm class The ConcurrentMain class Comparing the two solutions Lau15 dataset Kn57 dataset Conclusions Summary Chapter 7: Optimizing Divide and Conquer Solutions - The Fork/Join Framework An introduction to the fork/join framework Basic characteristics of the fork/join framework Limitations of the fork/join framework Components of the fork/join framework The first example - the k-means clustering algorithm The common classes The VocabularyLoader class The word, document, and DocumentLoader classes The DistanceMeasurer class The DocumentCluster class The serial version The SerialKMeans class The SerialMain class The concurrent version Two tasks for the fork/join framework - AssignmentTask and UpdateTask The ConcurrentKMeans class The ConcurrentMain class Comparing the solutions The second example - a data filtering algorithm Common features The serial version The SerialSearch class The SerialMain class The concurrent version The TaskManager class The IndividualTask class The ListTask class The ConcurrentSearch class The ConcurrentMain class Comparing the two versions The third example - the merge sort algorithm Shared classes The serial version The SerialMergeSort class The SerialMetaData class The concurrent version The MergeSortTask class The ConcurrentMergeSort class The ConcurrentMetaData class Comparing the two versions Other methods of the fork/join framework Summary Chapter 8: Processing Massive Datasets with Parallel Streams - The Map and Reduce Model An introduction to streams Basic characteristics of streams Sections of a stream Sources of a stream Intermediate operations Terminal operations MapReduce versus MapCollect The first example - a numerical summarization application The concurrent version The ConcurrentDataLoader class The ConcurrentStatistics class Customers from the United Kingdom Quantity from the United Kingdom Countries for product Quantity for product Multiple data filter Highest invoice amounts Products with a unit price between 1 and 10 The ConcurrentMain class The serial version Comparing the two versions The second example - an information retrieval search tool An introduction to the reduction operation The first approach - full document query The basicMapper() method The Token class The QueryResult class The second approach - reduced document query The limitedMapper() method The third approach - generating an HTML file with the results The ContentMapper class The fourth approach - preloading the inverted index The ConcurrentFileLoader class The fifth approach - using our own executor Getting data from the inverted index - the ConcurrentData class Getting the number of words in a file Getting the average tfxidf value in a file Getting the maximum and minimum tfxidf values in the index The ConcurrentMain class The serial version Comparing the solutions Summary Chapter 9: Processing Massive Datasets with Parallel Streams - The Map and Collect Model Using streams to collect data The collect() method The first example - searching data without an index Basic classes The Product class The Review class The ProductLoader class The first approach - basic search The ConcurrentStringAccumulator class The second approach - advanced search The ConcurrentObjectAccumulator class A serial implementation of the example Comparing the implementations The second example - a recommendation system Common classes The ProductReview class The ProductRecommendation class Recommendation system - the main class The ConcurrentLoaderAccumulator class The serial version Comparing the two versions The third example - common contacts in a social network Base classes The Person class The PersonPair class The DataLoader class The concurrent version The CommonPersonMapper class The ConcurrentSocialNetwork class The ConcurrentMain class The serial version Comparing the two versions Summary Chapter 10: Asynchronous Stream Processing - Reactive Streams Introduction to reactive streams in Java The Flow.Publisher interface The Flow.Subscriber interface The Flow.Subscription interface The SubmissionPublisher class The first example - a centralized system for event notification The Event class The Producer class The Consumer class The Main class The second example - a news system The News class The publisher classes The Consumer class The Main class Summary Chapter 11: Diving into Concurrent Data Structures and Synchronization Utilities Concurrent data structures Blocking and non-blocking data structures Concurrent data structures Interfaces BlockingQueue BlockingDeque ConcurrentMap TransferQueue Classes LinkedBlockingQueue ConcurrentLinkedQueue LinkedBlockingDeque ConcurrentLinkedDeque ArrayBlockingQueue DelayQueue LinkedTransferQueue PriorityBlockingQueue ConcurrentHashMap Using the new features First example with ConcurrentHashMap The forEach() method The search() method The reduce() method The compute() method Another example with ConcurrentHashMap An example with the ConcurrentLinkedDeque class The removeIf() method The spliterator() method Atomic variables Variable handles Synchronization mechanisms The CommonTask class The Lock interface The Semaphore class The CountDownLatch class The CyclicBarrier class The CompletableFuture class Using the CompletableFuture class Auxiliary tasks The main() method Summary Chapter 12: Testing and Monitoring Concurrent Applications Monitoring concurrency objects Monitoring a thread Monitoring a lock Monitoring an executor Monitoring the fork/join framework Monitoring a Phaser Monitoring the Stream API Monitoring concurrency applications The Overview tab The Memory tab The Threads tab The Classes tab The VM summary tab The MBeans tab The About tab Testing concurrency applications Testing concurrent applications with MultithreadedTC Testing concurrent applications with Java Pathfinder Installing Java Pathfinder Running Java Pathfinder Summary Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala Concurrency in Clojure Using Java elements Reference types Atoms Agents Refs Delays Futures Promises Concurrency in Groovy with the GPars library Software transactional memory Using Java elements Data parallelism The fork/join processing Actors Agent Dataflow Concurrency in Scala Future objects in Scala Promises Summary Index