دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Christoph Korner. Kaijisse Waaijer
سری:
ISBN (شابک) : 1789807557, 9781789807554
ناشر: Packt Publishing
سال نشر: 2020
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Mastering Azure Machine Learning: Perform large-scale end-to-end advanced machine learning on the cloud with Microsoft Azure ML به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تسلط بر یادگیری ماشینی Azure: با Microsoft Azure ML، یادگیری ماشینی پیشرفته تمام عیار در مقیاس بزرگ را در فضای ابری انجام دهید. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیکهای کارشناسی ارشد برای ساخت مدلها و خطوط لوله خودکار و بسیار مقیاسپذیر یادگیری ماشین در Azure با استفاده از TensorFlow، Spark و Kubernetes
افزایش حجم دادهها امروزه به سیستمهای توزیعشده، الگوریتمهای قدرتمند و مقیاسپذیر نیاز دارد. زیرساخت ابری برای محاسبه بینش ها و آموزش و استقرار مدل های یادگیری ماشینی (ML). این کتاب به شما کمک میکند دانش خود را در مورد ساخت مدلهای ML با استفاده از خطوط لوله Azure و ML سرتاسر بر روی ابر افزایش دهید.
این کتاب با مروری بر یک پروژه ML سرتاسر و راهنمای نحوه انتخاب سرویس Azure مناسب برای وظایف مختلف ML شروع میشود. سپس بر روی Azure ML تمرکز می کند و شما را در فرآیند آزمایش داده، آماده سازی داده ها و مهندسی ویژگی با استفاده از Azure ML و Python هدایت می کند. شما تکنیک های استخراج ویژگی های پیشرفته را با استفاده از پردازش زبان طبیعی (NLP)، تکنیک های کلاسیک ML، و اسرار یک موتور توصیه عالی و یک مدل بینایی کامپیوتری کارآمد با استفاده از روش های یادگیری عمیق یاد خواهید گرفت. همچنین نحوه آموزش، بهینهسازی و تنظیم مدلها را با استفاده از Azure AutoML و HyperDrive و انجام آموزشهای توزیعشده در Azure ML بررسی خواهید کرد. سپس، تکنیکهای مختلف استقرار و نظارت را با استفاده از خدمات Azure Kubernetes با Azure ML، همراه با اصول اولیه MLOps—DevOps for ML برای خودکارسازی فرآیند ML خود بهعنوان خط لوله CI/CD یاد خواهید گرفت.
در پایان این کتاب، شما به Azure ML تسلط خواهید داشت و میتوانید با اطمینان خطوط لوله ML مقیاسپذیر را در Azure طراحی، بسازید و راهاندازی کنید.
این کتاب یادگیری ماشینی برای متخصصان داده، تحلیلگران داده، مهندسان داده، دانشمندان داده یا توسعه دهندگان یادگیری ماشین است که می خواهند بر معماری های یادگیری ماشین مبتنی بر ابر مقیاس پذیر در Azure مسلط شوید. این کتاب به شما کمک می کند از خدمات پیشرفته Azure برای ساخت برنامه های هوشمند یادگیری ماشین استفاده کنید. درک ابتدایی پایتون و دانش کاری یادگیری ماشین الزامی است.
Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes
The increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud.
The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure ML and takes you through the process of data experimentation, data preparation, and feature engineering using Azure ML and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure AutoML and HyperDrive, and perform distributed training on Azure ML. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure ML, along with the basics of MLOps―DevOps for ML to automate your ML process as CI/CD pipeline.
By the end of this book, you'll have mastered Azure ML and be able to confidently design, build and operate scalable ML pipelines in Azure.
This machine learning book is for data professionals, data analysts, data engineers, data scientists, or machine learning developers who want to master scalable cloud-based machine learning architectures in Azure. This book will help you use advanced Azure services to build intelligent machine learning applications. A basic understanding of Python and working knowledge of machine learning are mandatory.
Cover Title Page Copyright and Credits About Packt Contributors Table of Contents Preface Section 1: Azure Machine Learning Services Chapter 1: Building an End-To-End Machine Learning Pipeline in Azure Performing descriptive data exploration Moving data to the cloud Understanding missing values Visualizing data distributions Finding correlated dimensions Measuring feature and target dependencies for regression Visualizing feature and label dependency for classification Exploring common techniques for data preparation Labeling the training data Normalization and transformation in machine learning Encoding categorical variables A feature engineering example using time-series data Using NLP to extract complex features from text Choosing the right ML model to train data Choosing an error metric The training and testing split Achieving great performance using tree-based ensemble models Modeling large and complex data using deep learning techniques Optimization techniques Hyperparameter optimization Model stacking AutoML Deploying and operating models Batch scoring using pipelines Real-time scoring using a container-based web service Tracking model performance, telemetry, and data skew Summary Chapter 2: Choosing a Machine Learning Service in Azure Demystifying the different Azure services for ML Choosing an Azure service for ML Choosing a compute target for an Azure ML service Azure Cognitive Services and Custom Vision Azure Cognitive Services Custom Vision—customizing the Cognitive Services API Azure ML tools with GUIs Azure ML Studio (classic) Azure Automated ML Microsoft Power BI The Azure ML service Organizing experiments and models in Azure ML Deployments through Azure ML Summary Section 2: Experimentation and Data Preparation Chapter 3: Data Experimentation and Visualization Using Azure Preparing your Azure ML workspace Setting up the ML Service workspace Running a simple experiment with Azure ML Logging metrics and tracking results Scheduling and running scripts Adding cloud compute to the workspace Visualizing high-dimensional data Tracking figures in experiments in Azure ML Unsupervised dimensionality reduction with PCA Using LDA for supervised projections Non-linear dimension reduction with t-SNE Generalizing t-SNE with UMAP Summary Chapter 4: ETL, Data Preparation, and Feature Extraction Managing data and dataset pipelines in the cloud Getting data into the cloud Organizing data in data stores and datasets Managing data in Azure ML Versioning datasets and dataset definitions Taking data snapshots for reproducibility The life cycle of a dataset Exploring data registered in the Azure ML service Exploring the datasets Exploring the data Preprocessing and feature engineering with Azure ML DataPrep Parsing different data formats Loading delimiter-separated data Parsing JSON data Loading binary column-store data in Parquet format Building a data transformation pipeline in Azure ML Generating features through expression Data type conversions Deriving columns by example Imputing missing values Label and one-hot encoding Transformations and scaling Filtering columns and rows Writing the processed data back to a dataset Summary Chapter 5: Advanced Feature Extraction with NLP Understanding categorical data Comparing textual, categorical, and ordinal data Transforming categories into numeric values Orthogonal embedding using one-hot encoding Categories versus text Building a simple bag-of-words model A naive bag-of-words model using counting Tokenization – turning a string into a list of words Stemming – rule-based removal of affixes Lemmatization – dictionary-based word normalization A bag-of-words model in scikit-learn Leveraging term importance and semantics Generalizing words using n-grams and skip-grams Reducing word dictionary size using SVD Measuring the importance of words using tf-idf Extracting semantics using word embeddings Implementing end-to-end language models End-to-end learning of token sequences State-of-the-art sequence-to-sequence models Text analytics using Azure Cognitive Services Summary Section 3: Training Machine Learning Models Chapter 6: Building ML Models Using Azure Machine Learning Working with tree-based ensemble classifiers Understanding a simple decision tree Advantages of a decision tree Disadvantages of a decision tree Combining classifiers with bagging Optimizing classifiers with boosting rounds Training an ensemble classifier model using LightGBM LightGBM in a nutshell Preparing the data Setting up the compute cluster and execution environment Building a LightGBM classifier Scheduling the training script on the Azure ML cluster Summary Chapter 7: Training Deep Neural Networks on Azure Introduction to deep learning Why DL? From neural networks to DL Comparing classical ML and DL Training a CNN for image classification Training a CNN from scratch in your notebook Generating more input data using augmentation Moving training to a GPU cluster using Azure ML compute Improving your performance through transfer learning Summary Chapter 8: Hyperparameter Tuning and Automated Machine Learning Hyperparameter tuning to find the optimal parameters Sampling all possible parameter combinations using grid search Trying random combinations using random search Converging faster using early termination The median stopping policy The truncation selection policy The bandit policy A HyperDrive configuration with termination policy Optimizing parameter choices using Bayesian optimization Finding the optimal model with AutoML Advantages and benefits of AutoML A classification example Summary Chapter 9: Distributed Machine Learning on Azure ML Clusters Exploring methods for distributed ML Training independent models on small data in parallel Training a model ensemble on large datasets in parallel Fundamental building blocks for distributed ML Speeding up DL with data-parallel training Training large models with model-parallel training Using distributed ML in Azure Horovod—a distributed DL training framework Implementing the HorovodRunner API for a Spark job Running Horovod on Azure ML compute Summary Chapter 10: Building a Recommendation Engine in Azure Introduction to recommender engines Content-based recommendations Measuring similarity between items Feature engineering for content-based recommenders Content-based recommendations using gradient boosted trees Collaborative filtering—a rating-based recommendation engine What is a rating? Explicit feedback as opposed to implicit feedback Predicting the missing ratings to make a recommendation Scalable recommendations using ALS factorization Combining content and ratings in hybrid recommendation engines Building a state-of-the-art recommender using the Matchbox Recommender Automatic optimization through reinforcement learning An example using Azure Personalizer in Python Summary Section 4: Optimization and Deployment of Machine Learning Models Chapter 11: Deploying and Operating Machine Learning Models Deploying ML models in Azure Understanding the components of an ML model Registering your models in a model registry Customizing your deployment environment Choosing a deployment target in Azure Building a real-time scoring service Implementing a batch scoring pipeline Inference optimizations and alternative deployment targets Profiling models for optimal resource configuration Portable scoring through the ONNX runtime Fast inference using FPGAs in Azure Alternative deployment targets Monitoring Azure ML deployments Collecting logs and infrastructure metrics Tracking telemetry and application metrics Summary Chapter 12: MLOps - DevOps for Machine Learning Ensuring reproducible builds and deployments Version-controlling your code Registering snapshots of your data Tracking your model metadata and artifacts Scripting your environments and deployments Validating your code, data, and models Rethinking unit testing for data quality Integration testing for ML End-to-end testing using Azure ML Continuous profiling of your model Summary Chapter 13: What\'s Next? Understanding the importance of data The future of ML is automated Change is the only constant – preparing for change Focusing first on infrastructure and monitoring Controlled rollouts and A/B testing Summary Other Books You May Enjoy Index