ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Marine Analytical Chemistry

دانلود کتاب شیمی تجزیه دریا

Marine Analytical Chemistry

مشخصات کتاب

Marine Analytical Chemistry

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3031144856, 9783031144851 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 458
[459] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 24 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Marine Analytical Chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی تجزیه دریا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی تجزیه دریا



این کتاب درسی مقدمه‌ای جامع و معتبر بر آخرین روش‌ها، ابزارها و تکنیک‌های تحلیلی مورد استفاده در محیط‌زیست دریایی ارائه می‌کند و دو حوزه اقیانوس‌شناسی شیمیایی و شیمی تحلیلی را در کنار هم قرار می‌دهد.

این کتاب به 11 فصل تقسیم شده است، این کتاب با مروری بر پارامترهای اصلی سیستم کربن دریایی شروع می‌شود و استراتژی‌های مختلف نمونه‌برداری مورد استفاده توسط جامعه علمی دریایی و تجزیه و تحلیل‌های شیمیایی مختلف را پوشش می‌دهد. برای اندازه گیری فلزات، رادیونوکلئیدها و مواد آلی در محیط دریایی. توجه ویژه ای به شناسایی و تعیین کمیت آلاینده های آلی پایدار دریایی، آلاینده های آلی در حال ظهور و میکروپلاستیک ها می شود. خوانندگان همچنین توضیحات در دسترس و نمونه‌های واقعی از کاربرد فناوری‌های سنجش از دور و سنجش درجا برای نظارت بر محیط دریایی را خواهند یافت. کتاب درسی با فصلی در مورد درمان داده ها به پایان می رسد که رویکردهای آماری مربوطه، تخمین عدم قطعیت و تضمین کیفیت اندازه گیری های شیمیایی دریایی را تشریح می کند.

این کتاب درسی هم دانش‌آموزان و هم متخصصان را به طور یکسان پایه‌ای فرا رشته‌ای و جامع برای تجزیه و تحلیل شیمیایی اقیانوس‌ها و دریاهای ما ارائه می‌دهد. span>


توضیحاتی درمورد کتاب به خارجی

This textbook offers a comprehensive and authoritative introduction to the latest analytical methods, tools and techniques used in the marine environment, bringing together the two fields of chemical oceanography and analytical chemistry.

Divided into 11 chapters, the book starts with an overview of the main parameters of the marine carbon system, and it covers different sampling strategies used by the marine scientific community, and the different chemical analyses to measure trace metals, radionuclides and organic matter in the marine environment. Particular attention is given to the identification and quantification of marine persistent organic pollutants, emerging organic contaminants and microplastics. Readers will also find accessible explanations and real life examples of the application of remote sensing and in-situ sensing technologies to monitor the marine environment. The textbook finishes with a chapter on data treatment that outlines the relevant statistical approaches, uncertainty estimation and quality assurance of marine chemical measurements.

This textbook provides both students and professionals alike with a transdisciplinary and comprehensive foundation for the chemical analysis of our oceans and seas.



فهرست مطالب

Preface
Contents
1: Carbonate System Species and pH
	1.1 Introduction
		1.1.1 Global Carbon Cycle
		1.1.2 Carbon Essential Ocean Variables
		1.1.3 Marine Carbonate System
		1.1.4 Uncertainties in Measured and Calculated Carbonate System Variables
	1.2 Sampling Procedure: Commonalities for Marine Carbon System Parameters
	1.3 Consistency and Accuracy of Analytical Techniques: The Importance of Certified Reference Materials
	1.4 Methodologies for the Analytical Determination of Key Marine Carbon System Variables
		1.4.1 Dissolved Inorganic Carbon
			Definition
			1.4.1.1 CO2 Extraction
			1.4.1.2 Infrared Detection
				Principle
				Technical Equipment
				Methodological Procedure/Computation and Quality Control
			1.4.1.3 Coulometric Titration
				Principle
				Technical Equipment/Methodological Procedure
				Computation and Quality Control
				Quality Control
		1.4.2 pH
			Definition
			1.4.2.1 Spectrophotometric Method
				Principle
				Technical Equipment
				Methodological Procedure
				Dye Selection and Preparation
					Delta R
		1.4.3 Total Alkalinity
			Definition
			1.4.3.1 Titration Methodology
			1.4.3.2 Method Considerations
			1.4.3.3 Practical Example
	1.5 Conclusions, Summary, and Future Insights
	References
2: Dissolved Organic Matter
	2.1 Introduction
	2.2 Sample Collection and Preservation
		2.2.1 Sampling, Processing and Preservation for Bulk DOM Analyses
		2.2.2 Sampling Processing and Preservation for Molecular DOM Analyses
	2.3 Bulk DOM Characterization
		2.3.1 Elemental Analyses
			2.3.1.1 Wet Oxidation
			2.3.1.2 High-Temperature Oxidation (HTO)
		2.3.2 Optical Analyses
			2.3.2.1 Measuring CDOM
			2.3.2.2 Processing CDOM Measurements
			2.3.2.3 Measuring FDOM
			2.3.2.4 Processing of FDOM Measurements
	2.4 Fractionation and Isolation
		2.4.1 Ultrafiltration
		2.4.2 Solid-Phase Extraction
		2.4.3 Coupled Reverse Osmosis/Electrodialysis
	2.5 Molecular Characterization
		2.5.1 Ultrahigh-Resolution Mass Spectrometry
			2.5.1.1 Ionization Techniques for FT-ICR-MS Analysis
			2.5.1.2 FT-ICR-MS Analysis
			2.5.1.3 Applications and Visualizations to Assess DOM Complexity
			2.5.1.4 Data Processing
			2.5.1.5 Limitations
		2.5.2 Nuclear Magnetic Resonance Spectroscopy
			2.5.2.1 Solid- Vs. Liquid-State NMR Spectroscopy of Marine DOM Samples
			2.5.2.2 One-Dimensional Solid- and Liquid-State NMR Spectroscopy
			2.5.2.3 Two-Dimensional Liquid-State NMR Studies
	References
3: Trace Metals
	3.1 Introduction
		3.1.1 Trace Metals in the Ocean
		3.1.2 Trace Metal Concentrations and Distributions
		3.1.3 Pioneering Marine Trace Metal Biogeochemistry
			Box 3.1: Technical Advances and Trace Metal Clean Techniques
		3.1.4 Future Challenges in Marine Trace Metal Biogeochemistry
	3.2 Trace Metal Clean Procedures
		Box 3.2: Evolution of Trace Metal Clean Procedures
		3.2.1 Trace Metal Clean Environment
		3.2.2 Trace Metal Clean Practices
			Box 3.3: Trace Metal Clean Practices
		3.2.3 Trace Metal Clean Sample Bottles
		3.2.4 Trace Metal Cleaning Procedures for Sample Bottles
		3.2.5 Trace Metal Clean Reagents
	3.3 Trace Metal Clean Sample Collection
		3.3.1 Dissolved Trace Metal Sampling
			3.3.1.1 Depth Profile Sampling
				Discrete Bottle Sampler Systems
					Box 3.4 Cleaning Bottle Samplers
				Pumping System on CTD Rosette
				Moored in Situ Serial Samplers
				ROV-Based Discrete Samplers
			3.3.1.2 Surface Sampling
				Discrete Bottle Samplers
				Continuous Flow Samplers
				Passive Samplers
					Box 3.5: Limitations of Passive Sampling Devices
				Sea Surface Microlayer (SML) Sampler
				Pole Sampler
		3.3.2 Particulate Trace Metal Sampling
			3.3.2.1 Bottle Sampler Collection
			3.3.2.2 In Situ Filtration
	3.4 Trace Metal Clean Sample Handling and Storage
		3.4.1 Dissolved Trace Metal Samples
		3.4.2 Size-Fractionated Dissolved Trace Metal Samples
		3.4.3 Particulate Trace Metal Samples
			Box 3.6: Ultrafiltration for Colloids and Particulates
	3.5 Sample Processing and Analytical Techniques
		3.5.1 Trace Metal Concentration Measurement Techniques
			3.5.1.1 ICP-MS Techniques
				Matrix Removal and Pre-Concentration Prior to ICP-MS Analysis
				SeaFAST: Automated Extraction of Metals from Seawater
					Box 3.7: SeaFAST in-Line Versus off-Line Configuration
					Box 3.8: Solid-Phase Extraction (SPE) and pH
					Box 3.9: UV Digestion
					Box 3.10: Internal Standard Addition for ICP-MS
				ICP-MS Analysis Following Extraction
			3.5.1.2 Flow Injection Analysis
			3.5.1.3 In Situ Metal Analysis Systems
			3.5.1.4 Data Quality Control for Trace Metal Concentration Measurements
		3.5.2 Trace Metal (Fe, Ni, Cu, Zn, Cd) Isotope Ratio Measurement Techniques
			3.5.2.1 Background
			3.5.2.2 Chemical Processing for Trace Metal Isotope Analysis
				Sea Salt Matrix Removal Stage
					Box 3.11: Chemical and Analytical Scheme for Multiple Trace Metal Isotope Ratio Analysis
				Purification Stage
					Box 3.12: Elution of Different Transition Metals from AGMP-1 Resin
			3.5.2.3 Analytical Procedures for Trace Metal Isotope Analysis
				Isotope Ratio Basics, Nomenclature and `Zero´ Isotope Standards
					Box 3.13: Transition Metal Isotope Standards
				MC-ICP-MS Analytical Techniques and Mass Bias Correction Techniques
					Box 3.14: Peak Alignment for Measurement of Trace Metal Isotope Ratios by MC-ICP-MS
					Box 3.15: Double Spike Calibration
				Uncertainty (Precision and Accuracy) on Trace Metal Isotope Ratios
		3.5.3 Trace Metal Speciation Measurement Techniques
			Box 3.16: Molecular Characterization of Metal-Binding Organic Ligands
			3.5.3.1 Voltammetric Techniques
				Box 3.17: Metal Determination: ASV versus CSV
			3.5.3.2 Voltammetric Analysis of Metal Complexation by Ligand Titration Using CLE-AdCSV
				Box 3.18: Forward and Reverse Titration
				Box 3.19: Limitations of Voltammetric Methods
			3.5.3.3 Data Quality Control for Trace Metal Speciation Measurements
	3.6 Considerations of Data Quality, Inter-Comparability and Accessibility
	References
4: Radionuclides as Ocean Tracers
	4.1 Introduction
		4.1.1 Basic Concepts of Radioactivity
			4.1.1.1 Nuclear Instability and Types of Radioactive Decay
			4.1.1.2 Equations of Radioactive Decay
			4.1.1.3 Decay Chains
		4.1.2 Why Do We Find Radionuclides in the Environment?
			4.1.2.1 Primordial and Natural Decay Series Radionuclides
			4.1.2.2 Cosmogenic Radionuclides
			4.1.2.3 Anthropogenic Radionuclides
	4.2 Radionuclides as Ocean Tracers
		4.2.1 Which Radionuclides Can Trace a Given Process?
			4.2.1.1 Input Source
			4.2.1.2 Physicochemical Behavior
			4.2.1.3 Half-Life
		4.2.2 What Are the Most Common Ocean Processes Studied Using Radionuclides?
			4.2.2.1 Ocean Circulation
			4.2.2.2 Particle Scavenging
			4.2.2.3 Land-Ocean Interaction
			4.2.2.4 Sedimentation Processes
			4.2.2.5 Atmosphere-Ocean Interaction
	4.3 Case Studies for the Application of Radionuclides as Ocean Tracers
		4.3.1 The 234Th/238U Pair as a Tracer of the Biological Pump
			4.3.1.1 What Is the Biological Pump and Why Is It Important?
			4.3.1.2 Why Is the 234Th/238U Pair an Ideal Tracer of Particle Export?
			4.3.1.3 How to Quantify Particle Export Using the 234Th/238U Pair?
				Step 1: Quantification of 234Th Fluxes Due to Particle Scavenging
					Box 4.1 234Th Flux Calculations
				Step 2: Conversion from 234Th Fluxes to POC Fluxes
				Example: Changes of POC Export Fluxes Across the Northwest Atlantic
			4.3.1.4 Closing Remarks
		4.3.2 Ra Isotopes as Tracers of Submarine Groundwater Discharge
			4.3.2.1 What Is Submarine Groundwater Discharge and Why Is It Important?
			4.3.2.2 Why Are Ra Isotopes Ideal Tracers of SGD?
			4.3.2.3 How to Quantify SGD Using Ra Isotopes?
				Step 1: Determination of Ra Fluxes Supplied by SGD: The Ra Mass Balance
				Step 2: Determination of the Fluxes of Water and Nutrients Supplied by SGD
				Example: SGD to the Mediterranean Sea
			4.3.2.4 How to Quantify Transport Time Scales Using Ra Isotopes?
			4.3.2.5 Closing Remarks
		4.3.3 Anthropogenic Radionuclides as Tracers of Ocean Circulation
			4.3.3.1 What Is Ocean Circulation and Why Is It Important?
			4.3.3.2 Why Are Anthropogenic Radionuclides Ideal Tracers of Ocean Circulation?
				Sources of Anthropogenic Radionuclides to the Ocean
					Box 4.2 Example of Weapon Test 90Sr as Tracer of Water Circulation in the North Atlantic
			4.3.3.3 How Can 129I Help Study the Circulation in the Arctic Ocean and the SPNA?
				Example 1: Pathways of Atlantic Waters in the Arctic Ocean
				Example 2: Changes of Surface Circulation in the Arctic Ocean
				Example 3 Circulation Time Scales to the Deep Labrador Sea in the Subpolar Region
			4.3.3.4 Closing Remarks
	4.4 Measurement of Radionuclides
		4.4.1 Radiometric Techniques
			4.4.1.1 Basic Concepts of Radiometric Techniques
			4.4.1.2 General Properties of Radiation Detectors
			4.4.1.3 Types of Radiation Detectors
				Gas Detectors
					Box 4.3 Quantifying 234Th in Seawater Using Geiger-Müller Detectors
				Semiconductor Detectors
					Box 4.4 Quantifying 228Ra and 226Ra in Seawater Using HPGe Semiconductor Detectors
				Scintillation Detectors
					Box 4.5 Quantifying 224Ra and 223Ra in Seawater Using a RaDeCC System
		4.4.2 Mass Spectrometric Techniques
			Box 4.6 Quantifying 129I in Seawater Using Accelerator Mass Spectrometry
	References
5: Persistent Organic Contaminants
	5.1 What Are Persistent Organic Contaminants
		5.1.1 Organochlorine Pesticides (OCPs)
		5.1.2 Polychlorinated Biphenyls (PCBs)
		5.1.3 Dioxins and Furans
		5.1.4 Polybrominated Flame Retardants (BFR)
		5.1.5 Polyfluoroalkyl Substances (PFAS)
	5.2 What International Actions Have Been Considered to Control POPs
	5.3 Distribution in the Environment
		5.3.1 Atmospheric Transport
		5.3.2 Soils and Sediments
		5.3.3 Surface Water and Groundwater
		5.3.4 Organisms
		5.3.5 Marine Ecosystems
	5.4 How Are People Exposed to POPs
	5.5 How Do POPs Affect Biota and Human Health
		5.5.1 Plants and Animals
		5.5.2 Human Health Effects and Perception
	5.6 Global Monitoring
	References
6: Emergent Organic Contaminants
	6.1 Introduction: Problem Statement and Opportunities
	6.2 Classification and Sources of EOCs
	6.3 Environment and Human Health Impact
	6.4 EOCs´ Impact in the Marine Environment
	6.5 Detection and Quantification of EOCs
	6.6 Traditional Technologies for the Degradation of EOC from the Water
		6.6.1 The Role of WWTPs in the Degradation of EOCs
		6.6.2 Main Problems with Current WWTP Technologies Regarding EOCS Degradation
		6.6.3 Promising Technologies for the Degradation of EOCs in Water
			6.6.3.1 Electrochemical Oxidation
			6.6.3.2 Photocatalytic Degradation
	6.7 Concluding Remarks
	References
7: Nanoparticles in the Marine Environment
	7.1 Introduction
	7.2 Researching Nanomaterials in Marine Ecosystems
		7.2.1 Sampling and Pre-treatment
			7.2.1.1 Filtration
			7.2.1.2 Cross-Flow Ultrafiltration
			7.2.1.3 Cloud Point Extraction
			7.2.1.4 Field Flow Fractionation
		7.2.2 Analysis
			7.2.2.1 Electron Microscopy
			7.2.2.2 Single-Particle Inductively Coupled Plasma Mass Spectroscopy (spICPMS)
			7.2.2.3 Raman Spectroscopy and Microscopy
	7.3 Case Studies of Natural and Anthropogenic Nanoparticles
		7.3.1 Iron Oxide Nanoparticles
		7.3.2 Titania Nanoparticles
		7.3.3 Plastic Nanoparticles
	7.4 Chapter Summary and Conclusion
	References
8: Microplastics and Nanoplastics
	8.1 Introduction
	8.2 Sampling the Marine Environment for Microplastic Detection
		8.2.1 Sampling of Seawater
		8.2.2 Sampling of Sediments
			8.2.2.1 Intertidal Sediments (Beaches)
			8.2.2.2 Subtidal Sediments (Seabed Sediments)
		8.2.3 Sampling of Biota
	8.3 Sample Processing for Microplastic Isolation
		8.3.1 Organic Matter Digestion
		8.3.2 Density Separation
		8.3.3 Filtration
		8.3.4 Quality Assurance and Quality Control (QA/QC) of Analysis
		8.3.5 Operative Protocol for Isolation of Microplastics from the Gastrointestinal Tract of Marine Species
	8.4 Analytical Techniques for Microplastic Characterization
		8.4.1 Physical Characterization
			8.4.1.1 Microscopy Techniques
			8.4.1.2 Light-Scattering Technique
		8.4.2 Chemical Characterization
			8.4.2.1 Spectroscopy Methods: FTIR and Raman
			8.4.2.2 Thermoanalytical Methods: Py-GC-MS
	8.5 Data Expression
	References
9: Remote Sensing: Satellite and RPAS (Remotely Piloted Aircraft System)
	9.1 Introduction
	9.2 Advantages and Limitations of Remote Sensing
	9.3 Spatial, Temporal, and Spectral Resolutions and Ranges
	9.4 Platforms
		9.4.1 Satellite Agencies
			9.4.1.1 National Aeronautics and Space Administration (NASA)
			9.4.1.2 National Oceanic and Atmospheric Administration (NOAA)
			9.4.1.3 The European Space Agency (ESA)
				Copernicus Program: ``Europe´s Eyes on Earth´´
		9.4.2 UAV
			9.4.2.1 Single Rotor
			9.4.2.2 Multi-rotor
			9.4.2.3 Fixed Wing
			9.4.2.4 Hybrid
	9.5 Types of Sensors
		9.5.1 Satellite Sensors
		9.5.2 UAV Sensors
	9.6 Application in Marine Analytical and Environmental Chemistry
	9.7 Case Studies
	References
10: In Situ Sensing: Ocean Gliders
	10.1 Ocean Gliders
		10.1.1 Description
		10.1.2 Contribution to the Global Ocean Observing System
		10.1.3 Contribution to the Mediterranean Sea Observing System
		10.1.4 Monitoring Programs in the Western Mediterranean
	10.2 Glider Operations at SOCIB
		10.2.1 Infrastructure
		10.2.2 Transnational Access and Marine Services
		10.2.3 International Framework
	10.3 SOCIB Glider Data Management System
		10.3.1 Data Management Plan
		10.3.2 Observation Flow
		10.3.3 Data Outputs
		10.3.4 Data Levels and Distribution
		10.3.5 Metadata Catalog
	10.4 Best Practices
		10.4.1 Pre-deployment and Preparation Phases
		10.4.2 Deployment Phase
		10.4.3 Post-Deployment Phase and Data Calibration
		10.4.4 From Data to Products
	10.5 Conclusions
	References
11: Marine Chemical Metadata and Data Management
	11.1 Introduction
		Why Manage Research Data
	11.2 The Metadata
		11.2.1 Data Narrative
		11.2.2 Data Credit
		11.2.3 Activity
		11.2.4 Material and Methods Used to Sample and Acquire the Data
		11.2.5 Measurement Descriptors
		11.2.6 The Sampling and the Logs
	11.3 Integrating Comprehensive Metadata in a Data Table
		11.3.1 Sampling and Spatiotemporal Information
		11.3.2 Measurement Descriptors
			11.3.2.1 Parameter and its Associated Error
			11.3.2.2 Units
			11.3.2.3 Flags
	11.4 The Metadata and Data File Format
	11.5 Dedicated Data Centres to Preserve and Share Data
		11.5.1 Importance of Depositing your Dataset in a Data Centre
		11.5.2 Rich Metadata: The Key to Boost the Visibility of your Data
		11.5.3 Policies
	References




نظرات کاربران