ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Manufacturing Processes for Engineering Materials

دانلود کتاب فرآیندهای ساخت مواد مهندسی

Manufacturing Processes for Engineering Materials

مشخصات کتاب

Manufacturing Processes for Engineering Materials

دسته بندی: مهندسی مکانیک
ویرایش: 5 
نویسندگان:   
سری:  
ISBN (شابک) : 9788131705667, 9789332528529 
ناشر: Pearson Education 
سال نشر: 2014 
تعداد صفحات: 1033 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 مگابایت 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Manufacturing Processes for Engineering Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فرآیندهای ساخت مواد مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Dedication
Contents
Preface
About the Authors …
Chapter 1 : Introduction
	1.1 What is Manufacturing?
	1.2 Product Design and Concurrent Engineering
	1.3 Design for Manufacture, Assembly, Disassembly, and Service
	1.4 Environmentally Conscious Design, Sustainable Manufacturing, and Product Life Cycle
	1.5 Selecting Materials
	1.6 Selecting Manufacturing Processes
	1.7 Computer-Integrated Manufacturing
	1.8 Lean Production and Agile Manufacturing
	1.9 Quality Assurance and Total Quality Management
	1.10 Manufacturing Costs and Global Competitiveness
	1.11 General Trends in Manufacturing
	Summary
	References
	Bibliography
Chapter 2 : Fundamentals of the Mechanical Behavior of Materials
	2.1 Introduction
	2.2 Tension
		2.2.1 Ductility
		2.2.2 True stress and true strain
		2.2.3 True stress–true strain curves
		2.2.4 Instability in tension
		2.2.5 Types of stress–strain curves
		2.2.6 Effects of temperature
		2.2.7 Effects of strain rate
		2.2.8 Effects of hydrostatic pressure
		2.2.9 Effects of radiation
	2.3 Compression
		2.3.1 Plane-strain compression test
		2.3.2 Bauschinger effect
		2.3.3 The disk test
	2.4 Torsion
	2.5 Bending
	2.6 Hardness
		2.6.1 Brinell test
		2.6.2 Rockwell test
		2.6.3 Vickers test
		2.6.4 Knoop test
		2.6.5 Scleroscope
		2.6.6 Mohs test
		2.6.7 Durometer
		2.6.8 Relationship between hardness and strength
	2.7 Fatigue
	2.8 Creep
	2.9 Impact
	2.10 Residual Stresses
		2.10.1 Effects of residual stresses
		2.10.2 Reduction of residual stresses
	2.11 Triaxial Stresses and Yield Criteria
		2.11.1 Maximum-shear-stress criterion
		2.11.2 Distortion-energy criterion
		2.11.3 Plane stress and plane strain
		2.11.4 Experimental verification of yield criteria
		2.11.5 Volume strain
		2.11.6 Effective stress and effective strain
		2.11.7 Comparison of normal stress–normal strain and shear stress–shear strain
	2.12 Work of Deformation
		2.12.1 Work, heat, and temperature rise
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
Chapter 3 : Structure and Manufacturing Properties of Metals
	3.1 Introduction
	3.2 The Crystal Structure of Metals
	3.3 Deformation and Strengthof Single Crystals
		3.3.1 Slip systems
		3.3.2 Ideal tensile strength of metals
		3.3.3 Imperfections
		3.3.4 Strain hardening (work hardening)
	3.4 Grains and Grain Boundaries
		3.4.1 Grain size
		3.4.2 Influence of grain boundaries
	3.5 Plastic Deformation of Polycrystalline Metals
	3.6 Recovery, Recrystallization,and Grain Growth
	3.7 Cold, Warm, and Hot Working
	3.8 Failure and Fracture
		3.8.1 Ductile fracture
		3.8.2 Brittle fracture
		3.8.3 Size effect
	3.9 Physical Properties
		3.9.1 Density
		3.9.2 Melting point
		3.9.3 Specific heat
		3.9.4 Thermal conductivity
		3.9.5 Thermal expansion
		3.9.6 Electrical and magnetic properties
		3.9.7 Resistance to corrosion
	3.10 General Properties and Applications of Ferrous Alloys
		3.10.1 Carbon and alloy steels
		3.10.2 Stainless steels
		3.10.3 Tool and die steels
	3.11 General Properties and Applications of Nonferrous Metals and Alloys
		3.11.1 Aluminum and aluminum alloys
		3.11.2 Magnesium and magnesium alloys
		3.11.3 Copper and copper alloys
		3.11.4 Nickel and nickel alloys
		3.11.5 Superalloys
		3.11.6 Titanium and titanium alloys
		3.11.7 Refractory metals
		3.11.8 Other nonferrous metals
		3.11.9 Special metals and alloys
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
Chapter 4 : Surfaces, Tribology, Dimensional Characteristics, Inspection, and Product Quality Assurance
	4.1 Introduction
	4.2 Surface Structure and Properties
	4.3 Surface Texture and Roughness
	4.4 Tribology: Friction, Wear, and Lubrication
		4.4.1 Friction
		4.4.2 Wear
		4.4.3 Lubrication
		4.4.4 Metalworking fluids
	4.5 Surface Treatments, Coatings, and Cleaning
		4.5.1 Surface treatment processes
		4.5.2 Cleaning of surfaces
	4.6 Engineering Metrology and Instrumentation
		4.6.1 Measuring instruments
		4.6.2 Automated measurement
	4.7 Dimensional Tolerances
	4.8 Testing and Inspection
		4.8.1 Nondestructive testing techniques
		4.8.2 Destructive testing techniques
		4.8.3 Automated inspection
	4.9 Quality Assurance
		4.9.1 Statistical methods of quality control
		4.9.2 Statistical process control
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
Chapter 5 : Metal-Casting Processes and Equipment; Heat Treatment
	5.1 Introduction
	5.2 Solidification of Metals
		5.2.1 Solid solutions
		5.2.2 Intermetallic compounds
		5.2.3 Two-phase alloys
		5.2.4 Phase diagrams
		5.2.5 The iron-carbon system
		5.2.6 The iron-iron carbide phase diagram
	5.3 Cast Structures
		5.3.1 Pure metals
		5.3.2 Alloys
		5.3.3 Structure-property relationships
	5.4 Fluid Flow and Heat Transfer
		5.4.1 Fluid flow
		5.4.2 Fluidity of molten metal
		5.4.3 Heat transfer
		5.4.4 Solidification time
		5.4.5 Shrinkage
	5.5 Melting Practice and Furnaces
	5.6 Casting Alloys
		5.6.1 Ferrous casting alloys
		5.6.2 Nonferrous casting alloys
	5.7 Ingot Casting and Continuous Casting
		5.7.1 Ferrous alloy ingots
		5.7.2 Continuous casting
		5.7.3 Strip casting
	5.8 Expendable-Mold, Permanent-Pattern Casting Processes
		5.8.1 Sand casting
		5.8.2 Shell-mold casting
		5.8.3 Plaster-mold casting
		5.8.4 Ceramic-mold casting
		5.8.5 Vacuum casting
	5.9 Expendable-Mold, Expendable-Pattern Casting Processes
		5.9.1 Expendable-pattern casting (lost foam)
		5.9.2 Investment casting (lost-wax process)
	5.10 Permanent-Mold Casting Processes
		5.10.1 Slush casting
		5.10.2 Pressure casting
		5.10.3 Die casting
		5.10.4 Centrifugal casting
		5.10.5 Squeeze casting
		5.10.6 Semisolid metal forming (thixocasting) and rheocasting
		5.10.7 Casting techniques for single-crystal components
		5.10.8 Rapid solidification
	5.11 Heat Treatment
		5.11.1 Heat treating ferrous alloys
		5.11.2 Heat treating nonferrous alloys and stainless steels
		5.11.3 Case hardening
		5.11.4 Annealing
		5.11.5 Tempering
		5.11.6 Cryogenic treatment
		5.11.7 Design for heat treating
		5.11.8 Cleaning, finishing, and inspecting castings
	5.12 Design Considerations
		5.12.1 Defects in castings
		5.12.2 General design considerations
		5.12.3 Design principles for expendable-mold casting
		5.12.4 Design principles for permanent-mold casting
		5.12.5 Computer modeling of casting processes
	5.13 Economics of Casting
	Summary
	Case Study Lost-Foam Casting of Engine Blocks
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Chapter 6 : Bulk Deformation Processes
	6.1 Introduction
	6.2 Forging
		6.2.1 Open-die forging
		6.2.2 Methods of analysis
		6.2.3 Types of forging
		6.2.4 Miscellaneous forging operations
		6.2.5 Forging defects
		6.2.6 Forgeability
		6.2.7 Die design
		6.2.8 Equipment
	6.3 Rolling
		6.3.1 Mechanics of flat rolling
		6.3.2 Defects in rolled products
		6.3.3 Vibration and chatter in rolling
		6.3.4 Flat-rolling practice
		6.3.5 Miscellaneous rolling operations
	6.4 Extrusion
		6.4.1 Metal flow in extrusion
		6.4.2 Mechanics of extrusion
		6.4.3 Miscellaneous extrusion processes
		6.4.4 Defects in extrusion
		6.4.5 Extrusion practice
	6.5 Rod, Wire, and Tube Drawing
		6.5.1 Mechanics of rod and wire drawing
		6.5.2 Defects in drawing
		6.5.3 Drawing practice
	6.6 Swaging
	6.7 Die Manufacturing Methods
	6.8 Die Failures
	6.9 Economics of Bulk Forming
	Summary
	Case Study Suspension Components for the Lotus Elise Automobile
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Chapter 7 : Sheet-Metal Forming Processes
	7.1 Introduction
	7.2 Sheet-Metal Characteristics
		7.2.1 Elongation
	7.3 Shearing
		7.3.1 Shearing operations
		7.3.2 Shearing dies
		7.3.3 Miscellaneous methods of cutting sheet metal
		7.3.4 Tailor-welded blanks
	7.4 Bending of Sheet and Plate
		7.4.1 Minimum bend radius
		7.4.2 Springback
		7.4.3 Forces
		7.4.4 Common bending operations
		7.4.5 Tube bending
	7.5 Miscellaneous Forming Processes
		7.5.1 Stretch forming
		7.5.2 Bulging
		7.5.3 Rubber-pad forming and hydroforming
		7.5.4 Spinning
		7.5.5 High-Energy-Rate Forming
	7.6 Deep Drawing
		7.6.1 Deep drawability (limiting drawing ratio)
		7.6.2 Deep-Drawing practice
	7.7 Formability of Sheet Metals and Modeling
		7.7.1 Testing for formability
		7.7.2 Dent resistance of sheet-metal parts
		7.7.3 Modeling of sheet-metal forming processes
	7.8 Equipment for Sheet-Metal Forming
	7.9 Design Considerations
	7.10 Economics of Sheet-Metal Forming
	Case Study Cymbal Manufacture
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Chapter 8 : Material-Removal Processes: Cutting
	8.1 Introduction
	8.2 Mechanics of Chip Formation
		8.2.1 Chip morphology
		8.2.2 Mechanics of oblique cutting
		8.2.3 Forces in orthogonal cutting
		8.2.4 Shear-angle relationships
		8.2.5 Specific energy
		8.2.6 Temperature
	8.3 Tool Wear and Failure
		8.3.1 Flank wear
		8.3.2 Crater wear
		8.3.3 Chipping
		8.3.4 General observations on tool wear
		8.3.5 Tool-condition monitoring
	8.4 Surface Finish and Surface Integrity
	8.5 Machinability
		8.5.1 Machinability of steels
		8.5.2 Machinability of various metals
		8.5.3 Machinability of various materials
		8.5.4 Thermally assisted machining
	8.6 Cutting-Tool Materials
		8.6.1 Carbon and medium-alloy steels
		8.6.2 High-speed steels
		8.6.3 Cast-cobalt alloys
		8.6.4 Carbides
		8.6.5 Coated tools
		8.6.6 Alumina-base ceramics
		8.6.7 Cubic boron nitride
		8.6.8 Silicon-nitride-base ceramics
		8.6.9 Diamond
		8.6.10 Whisker-reinforced and nanocrystalline tool materials
		8.6.11 Cryogenic treatment of cutting tools
	8.7 Cutting Fluids
		8.7.1 Types of cutting fluids and methods of application
		8.7.2 Near-dry and dry machining
		8.7.3 Cryogenic machining
	8.8 High-Speed Machining
	8.9 Machining Processes and Machine Tools for Producing Round Shapes
		8.9.1 Turning parameters
		8.9.2 Lathes and lathe operations
		8.9.3 Boring and boring machines
		8.9.4 Drilling, reaming, and tapping
	8.10 Machining Processes and Machine Tools for Producing Various Shapes
		8.10.1 Milling operations
		8.10.2 Planing and planers
		8.10.3 Shaping and shapers
		8.10.4 Broaching and broaching machines
		8.10.5 Sawing and saws
		8.10.6 Filing
		8.10.7 Gear manufacturing by machining
	8.11 Machining and Turning Centers
		8.11.1 Types of machining and turning centers
		8.11.2 Characteristics and capabilities of machining centers
		8.11.3 Reconfigurable Machines and Systems
		8.11.4 Hexapod machines
	8.12 Vibration and Chatter
	8.13 Machine-Tool Structures
	8.14 Design Considerations
	8.15 Economics of Machining
	Case Study Ping Golf Putters
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Chapter 9 : Material-Removal Processes:  Abrasive, Chemical, Electrical, and High-Energy Beams
	9.1 Introduction
	9.2 Abrasives
	9.3 Bonded Abrasives
		9.3.1 Bond types
		9.3.2 Wheel grade and structure
	9.4 Mechanics of Grinding
		9.4.1 Grinding forces
		9.4.2 Temperature
		9.4.3 Effects of temperature
	9.5 Grinding Wheel Wear
		9.5.1 Dressing, truing, and shaping of grinding wheels
		9.5.2 Grinding ratio
		9.5.3 Wheel selection and grindability of materials
	9.6 Grinding Operations and Machines
		9.6.1 Surface grinding
		9.6.2 Cylindrical grinding
		9.6.3 Internal grinding
		9.6.4 Centerless grinding
		9.6.5 Other types of grinders
		9.6.6 Creep-feed grinding
		9.6.7 Heavy stock removal by grinding
		9.6.8 Grinding chatter
		9.6.9 Grinding fluids
	9.7 Finishing Operations
	9.8 Deburring
	9.9 Ultrasonic Machining
	9.10 Chemical Machining
		9.10.1 Chemical milling
		9.10.2 Chemical blanking
		9.10.3 Photochemical blanking
	9.11 Electrochemical Machining
	9.12 Electrochemical Grinding
	9.13 Electrical-Discharge Machining
		9.13.1 Electrical-discharge grinding
		9.13.2 Wire EDM
	9.14 High-Energy-Beam Machining
		9.14.1 Laser-beam machining
		9.14.2 Electron-beam machining and plasma-arc cutting
	9.15 Water-Jet, Abrasive Water-Jet, and Abrasive-Jet Machining
	9.16 Design Considerations
		9.16.1 Grinding and abrasive machining processes
		9.16.2 Ultrasonic machining
		9.16.3 Chemical machining
		9.16.4 Electrochemical machining and grinding
		9.16.5 Electrical discharge machining
		9.16.6 Laser- and electron-beam machining
	9.17 Process Economics
	Case Study Manufacture of Stents
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Chapter 10 : Properties and Processing of Polymers and Reinforced Plastics;  Rapid Prototyping and Rapid Tooling
	10.1 Introduction
	10.2 The Structure of Polymers
		10.2.1 Polymerization
		10.2.2 Crystallinity
		10.2.3 Glass-transition temperature
		10.2.4 Polymer blends
		10.2.5 Additives in polymers
	10.3 : Thermoplastics: Behavior and Properties
	10.4 Thermosets: Behavior and Properties
	10.5 : Thermoplastics: General Characteristics and Applications
	10.6 Thermosets: General Characteristics and Applications
	10.7 High-Temperature Polymers, Electrically Conducting Polymers, and Biodegradable Plastics
		10.7.1 High-temperature polymers
		10.7.2 Electrically conducting polymers
		10.7.3 Biodegradable plastics
	10.8 Elastomers (Rubbers): General Characteristics and Applications
	10.9 Reinforced Plastics
		10.9.1 Structure of polymer-matrix-reinforced plastics
		10.9.2 Reinforcing fibers: characteristics and manufacture
		10.9.3 Fiber size and length
		10.9.4 Matrix materials
		10.9.5 Properties of reinforced plastics
		10.9.6 Applications of reinforced plastics
	10.10 Processing of Plastics
		10.10.1 Extrusion
		10.10.2 Injection molding
		10.10.3 Blow molding
		10.10.4 Rotational molding
		10.10.5 Thermoforming
		10.10.6 Compression molding
		10.10.7 Transfer molding
		10.10.8 Casting
		10.10.9 Cold forming and solid-phase forming
		10.10.10 Processing elastomers
	10.11 : Processing of Polymer-Matrix-Reinforced Plastics
		10.11.1 Molding
		10.11.2 Filament winding, pultrusion, and pulforming
		10.11.3 Product quality
	10.12 Rapid Prototyping and Rapid Tooling
		10.12.1 Stereolithography
		10.12.2 Polyjet
		10.12.3 Fused-deposition modeling
		10.12.4 Selective laser sintering
		10.12.5 Three-Dimensional Printing
		10.12.6 Direct (rapid) manufacturing and rapid tooling
	10.13 Design Considerations
	10.14 Economics of Processing Plastics
	Case Study Invisalign Orthodontic Aligners
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Chapter 11 : Properties and Processing of Metal Powders, Ceramics, Glasses, and Superconductors
	11.1 Introduction
	11.2 Powder Metallurgy
		11.2.1 Production of metal powders
		11.2.2 Particle size, distribution, and shape
		11.2.3 Blending metal powders
	11.3 Compaction of Metal Powders
		11.3.1 Pressure distribution in powder compaction
		11.3.2 Equipment
		11.3.3 Isostatic pressing
		11.3.4 Miscellaneous compacting and shaping processes
		11.3.5 Punch and die materials
	11.4 Sintering
	11.5 Secondary and Finishing Operations
	11.6 Design Considerations for Powder Metallurgy
	11.7 Economics of Powder Metallurgy
	11.8 Ceramics: Structure, Properties, and Applications
		11.8.1 Structure and types of ceramics
		11.8.2 General properties and applications of ceramics
	11.9 Shaping Ceramics
		11.9.1 Casting
		11.9.2 Plastic forming
		11.9.3 Pressing
		11.9.4 Drying and firing
		11.9.5 Finishing operations
	11.10 Glasses: Structure, Properties, and Applications
		11.10.1 Types of glasses
		11.10.2 Mechanical properties
		11.10.3 Physical properties
		11.10.4 Glass ceramics
	11.11 Forming and Shaping Glass
		11.11.1 Manufacture of discrete glass products
		11.11.2 Techniques for treating glass
	11.12 Design Considerations for Ceramic and Glass Products
	11.13 Graphite and Diamond
		11.13.1 Graphite
		11.13.2 Diamond
	11.14 Processing Metal-Matrix and Ceramic-Matrix Composites
		11.14.1 Metal-matrix composites
		11.14.2 Ceramic-matrix composites
		11.14.3 Miscellaneous composites
	11.15 Processing Superconductors
	Case Study Hot Isostatic Pressing of Valve Lifter
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Chapter 12 : Joining and Fastening Processes
	12.1 Introduction
	12.2 Oxyfuel Gas Welding
	12.3 : Arc Welding Processes: Consumable Electrode
		12.3.1 Heat transfer in arc welding
		12.3.2 Shielded metal arc weiding
		12.3.3 Submerged arc welding
		12.3.4 Gas metal arc welding
		12.3.5 Flux-cored arc welding
		12.3.6 Electrogas welding
		12.3.7 Electroslag welding
		12.3.8 Electrodes for arc welding
	12.4 Arc Welding Processes: Nonconsumable Electrode
		12.4.1 Gas tungsten arc welding
		12.4.2 Atomic hydrogen welding
		12.4.3 Plasma arc welding
	12.5 High-Energy-Beam Welding
		12.5.1 Electron-beam welding
		12.5.2 Laser-beam welding
	12.6 The Fusion Welded Joint
		12.6.1 Weld quality
		12.6.2 Weldability
		12.6.3 Testing welded joints
		12.6.4 Welding process selection
	12.7 Cold Welding
	12.8 Ultrasonic Welding
	12.9 Friction Welding
	12.10 Resistance Welding
		12.10.1 Resistance spot welding
		12.10.2 Resistance seam welding
		12.10.3 Resistance projection welding
		12.10.4 Flash welding
		12.10.5 Stud arc welding
		12.10.6 Percussion welding
	12.11 Explosion Welding
	12.12 Diffusion Bonding
	12.13 Brazing and Soldering
		12.13.1 Brazing
		12.13.2 Brazing methods
		12.13.3 Soldering
	12.14 Adhesive Bonding
		12.14.1 Types of adhesives
		12.14.2 Surface preparation and application
		12.14.3 Process capabilities
		12.14.4 Electrically conducting adhesives
	12.15 Mechanical Fastening
		12.15.1 Hole preparation
		12.15.2 Threaded fasteners
		12.15.3 Rivets
		12.15.4 Various methods of fastening
	12.16 Joining Nonmetallic Materials
		12.16.1 Joining thermoplastics
		12.16.2 Joining thermosets
		12.16.3 Joining ceramics and glasses
	12.17 Design Considerations in Joining
		12.17.1 Design for welding
		12.17.2 Design for brazing and joining
		12.17.3 Design for adhesive bonding
		12.17.4 Design for mechanical fastening
	12.18 Economic Considerations
	Case Study Friction Welding of Monosteel® Pistons
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Chapter 13 : Fabrication of Microelectronic, Micromechanical, and Microelectromechanical Devices; Nanomanufacturing
	13.1 Introduction
	13.2 Clean Rooms
	13.3 Semiconductors and Silicon
	13.4 Crystal Growing and Wafer Preparation
	13.5 Films and Film Deposition
	13.6 Oxidation
	13.7 Lithography
	13.8 Etching
		13.8.1 Wet etching
		13.8.2 Dry etching
	13.9 Diffusion and Ion Implantation
	13.10 Metallization and Testing
	13.11 Wire Bonding and Packaging
	13.12 Yield and Reliability of Chips
	13.13 Printed Circuit Boards
	13.14 Micromachining of MEMS Devices
		13.14.1 Bulk micromachining
		13.14.2 Surface micromachining
	13.15 LIGA and Related Microfabrication Processes
	13.16 Solid Freeform Fabrication of Devices
	13.17 Mesoscale Manufacturing
	13.18 Nanoscale Manufacturing
	CASE STUDY Digital Micromirror Device
	Summary
	Bibliography
	Questions
	Problems
	Design
Chapter 14 : Automation of Manufacturing Processes and Operations
	14.1 Introduction
	14.2 Automation
		14.2.1 Evolution of automation
		14.2.2 Goals of automation
		14.2.3 Applications of automation
		14.2.4 Hard automation
		14.2.5 Soft automation
		14.2.6 Programmable controllers
		14.2.7 Total productive maintenance
	14.3 Numerical Control
		14.3.1 Computer numerical control
		14.3.2 Principles of numerical control machines
		14.3.3 Types of control systems
		14.3.4 Positioning accuracy of numerical control machines
		14.3.5 Advantages and limitations of numerical control
	14.4 Programming for Numerical Control
	14.5 Adaptive Control
	14.6 Material Handling and Movement
	14.7 Industrial Robots
		14.7.1 Robot components
		14.7.2 Classification of robots
		14.7.3 Applications and selection of robots
	14.8 Sensor Technology
		14.8.1 Sensor classification
		14.8.2 Sensor fusion
	14.9 Flexible Fixturing
	14.10 Assembly, Disassembly, and Service
		14.10.1 Assembly systems
	14.11 Design Considerations
		14.11.1 Design for fixturing
		14.11.2 Design for assembly, disassembly, and service
	14.12 Economic Considerations
	Summary
	Bibliography
	Questions
	Problems
	Design
Chapter 15 : Computer-Integrated Manufacturing Systems
	15.1 Introduction
	15.2 Manufacturing Systems
	15.3 Computer-Integrated Manufacturing
		15.3.1 Computer-integrated manufacturing databases
	15.4 Computer-Aided Design and Engineering
		15.4.1 Exchange specifications
		15.4.2 Elements of computer-aided design systems
	15.5 Computer-Aided Manufacturing
	15.6 Computer-Aided Process Planning
		15.6.1 Elements of computer-aided process-planning systems
		15.6.2 Material-requirements and manufacturing resource planning systems
		15.6.3 Enterprise resource planning
	15.7 Computer Simulation of Manufacturing Processes and Systems
	15.8 Group Technology
		15.8.1 Classification and coding of parts
		15.8.2 Coding
		15.8.3 Coding systems
		15.8.4 Advantages of group technology
	15.9 Cellular Manufacturing
	15.10 Flexible Manufacturing Systems
	15.11 Holonic Manufacturing
	15.12 Just-in-Time Production
	15.13 Lean Manufacturing
	15.14 Communications Networks in Manufacturing
		15.14.1 Communications standards
	15.15 Artificial Intelligence
		15.15.1 Expert systems
		15.15.2 Natural-language processing
		15.15.3 Machine vision
		15.15.4 Artificial neural networks
		15.15.5 Fuzzy logic
	Summary
	Bibliography
	Questions
	Problems
	Design
Chapter 16 : Product Design and Manufacturingin a Global Competitive Environment
	16.1 Introduction
	16.2 Product Design and Robust Design
		16.2.1 Product design considerations
		16.2.2 Product design and quantity of materials
		16.2.3 Robustness and robust design
	16.3 Product Quality and Quality Management
		16.3.1 Quality as a manufacturing goal
		16.3.2 Total quality management
		16.3.3 Deming methods
		16.3.4 Taguchi methods
		16.3.5 Taguchi loss function
		16.3.6 The ISO and QS Standards
	16.4 Life-Cycle Engineering and Sustainable Manufacturing
	16.5 Selection of Materials for Products
		16.5.1 General properties of materials
		16.5.2 Shapes of commercially available materials
		16.5.3 Manufacturing characteristics of materials
		16.5.4 Reliability of material supply
		16.5.5 Cost of materials and processing
	16.6 Substitution of Materials in Products
	16.7 Capabilities of Manufacturing Processes
		16.7.1 Robustness in manufacturing processes and machinery
	16.8 Selection of Manufacturing Processes
	16.9 Manufacturing Costs and Cost Reduction
		16.9.1 Cost reduction
	Summary
	Summary of Equations
	Bibliography
	Questions
	Problems
	Design
Index




نظرات کاربران