ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Managing Wine Quality: Volume 2: Oenology and Wine Quality (Woodhead Publishing Series in Food Science, Technology and Nutrition)

دانلود کتاب مدیریت کیفیت شراب: جلد 2: گیاه شناسی و کیفیت شراب (مجموعه انتشارات Woodhead در علوم، فناوری و تغذیه)

Managing Wine Quality: Volume 2: Oenology and Wine Quality (Woodhead Publishing Series in Food Science, Technology and Nutrition)

مشخصات کتاب

Managing Wine Quality: Volume 2: Oenology and Wine Quality (Woodhead Publishing Series in Food Science, Technology and Nutrition)

ویرایش: [2, 2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 0081020651, 9780081020654 
ناشر: Woodhead Publishing 
سال نشر: 2021 
تعداد صفحات: 886
[890] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 42 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Managing Wine Quality: Volume 2: Oenology and Wine Quality (Woodhead Publishing Series in Food Science, Technology and Nutrition) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدیریت کیفیت شراب: جلد 2: گیاه شناسی و کیفیت شراب (مجموعه انتشارات Woodhead در علوم، فناوری و تغذیه) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Managing Wine Quality: Volume II: Oenology and Wine Quality
Copyright
Contents
Contributors
Part One: Winemaking technologies and wine quality
	Chapter 1: Extraction technologies and wine quality
		1.1. Introduction
		1.2. Chemical factors in extraction
			1.2.1. Water
			1.2.2. Ethanol
			1.2.3. Sulfur dioxide
		1.3. Biological factors in extraction
			1.3.1. Yeasts
			1.3.2. Enzymes
				1.3.2.1. Effect on anthocyanins and tannins
				1.3.2.2. Effect on polysaccharides
				1.3.2.3. Effect on aromas and their precursors
				1.3.2.4. Effect on the extraction of juice
				1.3.2.5. Special case of anaerobic metabolism
		1.4. Physical factors in extraction
			1.4.1. Heat transfer
			1.4.2. Transfers of matter
				1.4.2.1. Transfer of liquid
				1.4.2.2. Transfer of solids
			1.4.3. The effect of changes in pressure
		1.5. Techniques and procedures applied in white and rosé wine vinification
			1.5.1. Techniques applied to white wine vinification
				1.5.1.1. Skin maceration
				1.5.1.2. ``Ice wines´´ and cryoselection
				1.5.1.3. Supra-extraction
				1.5.1.4. Thermal treatment of musts
			1.5.2. Techniques applied to rosé wine vinification
				1.5.2.1. Direct pressing rosés
				1.5.2.2. Saignée rosés
				1.5.2.3. Maceration rosés
				1.5.2.4. Carbonic maceration rosés
		1.6. Red wine vinification with traditional maceration
			1.6.1. Destemming and crushing
			1.6.2. Processes in traditional maceration
		1.7. Procedures for red and other wines based on displacement of the must
			1.7.1. Pumping over
				1.7.1.1. Use of carbon dioxide generated by fermentation as a pumping over ``driver´´
			1.7.2. Racking
		1.8. Procedures for red and other wines based on displacement of the pomace: Punching down
			1.8.1. Mobile punching down devices
			1.8.2. Traditional vats equipped with punching down systems
			1.8.3. Automaceration vats
			1.8.4. Use of inflatable balls to drive the marc hat
		1.9. Thermal treatments for red and other wines applied to traditional maceration
			1.9.1. Cold prefermentation maceration
			1.9.2. The cryo-flash procedure
			1.9.3. Hot prefermentation maceration
			1.9.4. Hot maceration of the pomace
			1.9.5. Hot final maceration
		1.10. Thermovinification of red and other wines
			1.10.1. Prefermentation and fermentation stages
			1.10.2. Procedures and equipment
			1.10.3. Effects on the composition of musts and wines
		1.11. Flash-release procedure for red and other wines
			1.11.1. Procedures and equipment
			1.11.2. Effects on wine quality
		1.12. The thermo-release procedure for red and other wines
		1.13. Vinification of red and other wines by carbonic maceration
			1.13.1. Procedures and equipment
			1.13.2. Effect on wine quality
		1.14. Traditional vinification of red and other wines with whole berries
		1.15. Draining and pressing
			1.15.1. Draining
			1.15.2. Pressing
				1.15.2.1. Discontinuous presses
					Pneumatic closed-cage presses
					Plate presses
				1.15.2.2. Continuous presses
				1.15.2.3. Centrifugal decanter
		1.16. Conclusion
		References
	Chapter 2: Improving yeast and fermentation management
		2.1. Introduction
		2.2. Yeast and fermentation management and wine quality
		2.3. Yeast rehydration and handling
		2.4. Yeast inoculation
		2.5. Yeast inoculation rate
		2.6. Yeast inoculation timing
		2.7. Sequential yeast inoculation strategies
		2.8. Yeast storage
		2.9. Nutrient strategies
			2.9.1. Nitrogen
			2.9.2. Organic nitrogen
			2.9.3. Inorganic nitrogen
			2.9.4. How much nitrogen is needed?
			2.9.5. When should you add nitrogen?
			2.9.6. Oxygen-Lipids
			2.9.7. Minerals
			2.9.8. Vitamins
			2.9.9. Difficult fermentation conditions-High potential alcohol
			2.9.10. Difficult fermentation conditions-Under- or overclarified white juice at low temperatures
			2.9.11. Difficult fermentation conditions-Tall and narrow tanks
			2.9.12. Difficult fermentation conditions-High sugar
		2.10. Sulfur compounds and dealing with them
		2.11. Preventing stuck and sluggish fermentations
			2.11.1. Nutrition
			2.11.2. Aerobic survival factors
			2.11.3. Temperature management
			2.11.4. Oenological yeast selection
			2.11.5. Yeast rehydration and handling
			2.11.6. Agrochemical and natural inhibitors
		2.12. Restarting stuck and sluggish fermentations
			2.12.1. Restarting using encapsulated yeast
		2.13. Conclusions
		Acknowledgments
		References
	Chapter 3: Metabolic engineering of wine yeast and advances in yeast selection methods for improved wine quality
		3.1. Introduction
		3.2. Improving wine yeasts: Current targets
		3.3. A systems biology approach to wine yeast studies
			3.3.1. Systems biology: A revolutionary approach to understanding yeast
			3.3.2. Application of systems biology techniques in wine yeast studies
		3.4. Biotechnology, systems biology and the generation of new yeast strains
			3.4.1. The breeding and other ``traditional´´ approaches
			3.4.2. Potential of genetic engineering
			3.4.3. Metabolic engineering
		3.5. Molecular biology and systems biology in the identification of wine yeasts
			3.5.1. Hybridization and karyotyping
			3.5.2. Polymerase chain reaction-based interspecies discrimination
			3.5.3. Intraspecies discrimination
		3.6. Future trends
		References
	Chapter 4: Malolactic fermentation and its effects on wine quality and safety
		4.1. Introduction
		4.2. Development of lactic acid bacteria in the wine microbiota
			4.2.1. Interactions between yeast and lactic acid bacteria
			4.2.2. Nutrition of lactic acid bacteria in fermenting grape must and wine: Sugars, amino acids, and organic acids
			4.2.3. Main factors of lactic acid bacteria growth in wine: pH, ethanol, temperature, sulfur dioxide, and other toxic com ...
				4.2.3.1. Temperature
				4.2.3.2. pH
				4.2.3.3. Sulfur dioxide
				4.2.3.4. Ethanol
				4.2.3.5. Other compounds
		4.3. Variations in the diversity of lactic acid bacteria species during winemaking
			4.3.1. Lactic acid bacteria species in grape must and wine
			4.3.2. Spontaneous selection of Oenococcus oeni during alcoholic fermentation
			4.3.3. Intraspecific diversity of O. oeni and variations during winemaking
		4.4. Lactic acid bacteria and improving wine quality
			4.4.1. Deacidification by malic acid degradation: The malolactic reaction, the malolactic enzyme
			4.4.2. Citric acid degradation: Metabolic pathway
			4.4.3. Methionine metabolism: Metabolic pathway and sulfur compounds
			4.4.4. Oxidase and esterase activities and aroma compounds
		4.5. Lactic acid bacteria and wine spoilage, undesirable lactic acid bacteria strains
			4.5.1. Increased volatile acidity due to the fermentation of sugars: ``Lactic spoilage´´
			4.5.2. Production of biogenic amines: Metabolic pathways, enzymatic and genetic aspects
			4.5.3. Glycerol degradation to acrolein and ``bitterness´´
			4.5.4. Glucan synthesis and ``ropy´´ wines
			4.5.5. New tools for detecting undesirable strains
		4.6. Controlling malolactic fermentation by malolactic starters
			4.6.1. Reasons for using malolactic starters
			4.6.2. Definition of malolactic starters
			4.6.3. Isolation and selection of malolactic starters
			4.6.4. Using malolactic starters
		4.7. Concluding remarks and prospects for wine lactic acid bacteria and malolactic fermentation
		References
	Chapter 5: Enzymes and wine quality
		5.1. Introduction
		5.2. Definitions and production methods
			5.2.1. Definitions
				5.2.1.1. Historical background
			5.2.2. Production methods
				5.2.2.1. Submerged liquid fermentation
				5.2.2.2. Solid state fermentation
				5.2.2.3. Recovery
				5.2.2.4. Enzyme composition
		5.3. Regulatory aspects
			5.3.1. European regulation
			5.3.2. Other regulations
			5.3.3. The association of enzyme producers: AMFEP
		5.4. Enzyme applications in winemaking
			5.4.1. Mode and conditions of use
			5.4.2. Dose recommendations
			5.4.3. List of enzyme applications in wine
			5.4.4. Analytical methods
			5.4.5. Enzyme activities
				5.4.5.1. Pectinases
				5.4.5.2. Hemicellulases
				5.4.5.3. Cellulases
				5.4.5.4. Glycosidases
				5.4.5.5. Glucanases
				5.4.5.6. Proteases
				5.4.5.7. Urease
				5.4.5.8. Lysozyme
		5.5. Advances in enzyme discovery
			5.5.1. Enzyme purification
			5.5.2. Wine polysaccharide composition
		5.6. Enzyme use in pre-fermentation stages
			5.6.1. Extraction in whites or rosés
			5.6.2. Clarification in whites, rosés and reds
			5.6.3. Extraction in red winemaking
			5.6.4. Thermovinification
		5.7. Enzyme use in post-fermentation stages
			5.7.1. Maturation
				5.7.1.1. Ageing on lees
				5.7.1.2. Aroma liberation
			5.7.2. Filtration
		5.8. Monitoring enzyme performance
			5.8.1. The pectin test
				5.8.1.1. Preparing the test solution
				5.8.1.2. Running the test
				5.8.1.3. Reading the scale
			5.8.2. Clarification test
			5.8.3. Other tests
		5.9. Future trends
		5.10. Conclusions
		5.11. Sources of further information
		Acknowledgments
		References
		Further reading
	Chapter 6: Membrane and other techniques for the management of wine composition
		6.1. Introduction
		6.2. Some caveats
		6.3. Some perspective-Convention and intervention
		6.4. Next-generation tools-Phase change techniques
			6.4.1. Freeze concentration
			6.4.2. Evaporation
			6.4.3. Spinning cone distillation
		6.5. Membrane separation techniques
			6.5.1. Some basic membrane terminology (as related to wine treatment)
			6.5.2. Reverse osmosis
			6.5.3. Nanofiltration
			6.5.4. Concentration by reverse osmosis
		6.6. Membrane separation treatment and recombination
		6.7. Volatile acidity removal
		6.8. The problem of excess alcohol
			6.8.1. Traditional options for lower wine alcohol
			6.8.2. Distillation-based techniques
			6.8.3. Spinning cone column
			6.8.4. Membrane separation and distillation of the permeate
			6.8.5. ``Diafiltration´´
			6.8.6. Evaporative perstraction
			6.8.7. Membrane separation and evaporative perstraction (Memstar process)
		6.9. Taint removal
			6.9.1. Smoke taint
			6.9.2. Brettanomyces taint
		6.10. Ultrafiltration
		6.11. Electrodialysis
			6.11.1. The principle of electrodialysis
			6.11.2. Process description
			6.11.3. Salt reduction by electrodialysis
			6.11.4. Acidity adjustment with bipolar membrane electrodialysis
		References
		Further reading
	Chapter 7: Aging on lees and their alternatives: Impact on wine
		7.1. What are wine lees?
		7.2. Yeast autolysis
			7.2.1. Structural and ultrastructural changes in the yeast cell
			7.2.2. Autolysis mechanisms
				7.2.2.1. Proteolysis
				7.2.2.2. Degradation of the cell wall
			7.2.3. Compounds released during autolysis
				7.2.3.1. Evolution of nitrogen compounds during autolysis
				7.2.3.2. Impact of nitrogen fractions on wine quality
				7.2.3.3. Polysaccharides
				7.2.3.4. Lipids
				7.2.3.5. Nucleic acids
				7.2.3.6. Volatile compounds
			7.2.4. Biogenic amines and lees
		7.3. Aging of red wines on lees
			7.3.1. Effects on phenols and anthocyanins
			7.3.2. Interactions between mannoproteins and tannins
			7.3.3. Redox phenomena associated with the presence of lees
		7.4. Yeast lees adsorption properties
			7.4.1. Volatile phenols
			7.4.2. Ochratoxin A
			7.4.3. Thiols
			7.4.4. Phenolic compounds and browning pigments
		7.5. Improving wine aging on lees and alternatives
			7.5.1. Applications for improving alcoholic fermentation
			7.5.2. Applications to modify sensorial profile
		7.6. Conclusions
		References
		Further reading
	Chapter 8: New directions in stabilization, clarification, and fining
		8.1. Introduction
		8.2. White wines, proteins, and haze
		8.3. The origin of wine proteins
		8.4. Characterization of wine proteins
			8.4.1. Molecular weight
			8.4.2. Isoelectric point of wine proteins
			8.4.3. Glycosylation
			8.4.4. Stability
		8.5. Protein levels in white wines
			8.5.1. The problem of wine protein quantification
			8.5.2. Protein concentration and berry development
			8.5.3. Effect of grape fungal infection
			8.5.4. Role of water stress
			8.5.5. Mechanical harvesting
		8.6. Mechanism of protein haze formation in wine
			8.6.1. Nature of the haze-forming proteins
			8.6.2. HFPs thermal stability
			8.6.3. Type of proteins
			8.6.4. Ions
			8.6.5. Wine pH
			8.6.6. Phenolic compounds
			8.6.7. Temperature
			8.6.8. Mechanisms of haze formation
		8.7. Bentonite fining
			8.7.1. What is a bentonite?
			8.7.2. Methods for bentonite preparation
			8.7.3. Protein adsorption by bentonite particles
			8.7.4. Predictive assays for heat stability
			8.7.5. The sensory impact of bentonite fining
			8.7.6. White wine bentonite fining and volume of lees
			8.7.7. Bentonite regeneration after wine fining
			8.7.8. Improving bentonite efficiency by in-line dosing
			8.7.9. Metals and bentonite
		8.8. Use of gelatine in wine fining
			8.8.1. The nature of oenological gelatines
			8.8.2. Polyphenol-protein reaction
			8.8.3. Gelatine fining
			8.8.4. Must clarification using the flotation technique
		8.9. Yeast protein extracts
			8.9.1. Why is a new oenological adjuvant required?
			8.9.2. Regulation and definition of yeast protein extracts
			8.9.3. YPE composition and characteristics
			8.9.4. Clarification
			8.9.5. Wine color and browning prevention
			8.9.6. Volume of lees
			8.9.7. Protein haze protection
			8.9.8. Foaming properties
		8.10. Wine fining with nonanimal proteins
			8.10.1. Gluten
			8.10.2. Combination of gluten with other fining agents for wine clarification
			8.10.3. Maize zeins
			8.10.4. Grape seed extract
			8.10.5. Principle of flotation
			8.10.6. Flotation trials at a laboratory scale
			8.10.7. Industrial flotation experiments
		8.11. Other fining agents
			8.11.1. Polyvinylpolypyrrolidone
			8.11.2. Kieselsol
			8.11.3. Isinglass
			8.11.4. Casein
			8.11.5. Carbon or charcoal
		8.12. Equipment for the addition of fining agents to wine
		8.13. Use of fungus proteases
		8.14. Wine fining and allergies
			8.14.1. Milk proteins
			8.14.2. Egg proteins
			8.14.3. Fish gelatine and isinglass
			8.14.4. Plant proteins as fining agents
			8.14.5. Practical recommendation to limit the allergenic potential of protein-fined wines
		8.15. New fining technologies
			8.15.1. Nanotechnology
			8.15.2. Polymer-bentonite membranes
			8.15.3. Mesoporous nanomaterials
			8.15.4. Nanoparticles
		8.16. Wine fining: General conclusion and practical recommendations
		Acknowledgments
		References
	Chapter 9: Microoxygenation: Effect on wine composition and quality
		9.1. Introduction
		9.2. Basic oxidation reactions and substrates of oxidation in wine
		9.3. Basic phenolic reactions in red wine involving oxygen
		9.4. When does oxygen come into contact with wine?
		9.5. The traditional method of microoxygenation
		9.6. Alternatives or alternative methods for microoxygenation
		9.7. Effect of microoxygenation on the chemical and sensorial composition of red wine
		9.8. Effect of microoxygenation on the microbiology of wine
		9.9. Microoxygenation research at Department of Viticulture and Oenology Stellenbosch University
			9.9.1. Workplan
			9.9.2. Results
		9.10. Oxygen dosages and treatment periods
		9.11. Deciding on the applicability of microoxygenation and monitoring the process
		9.12. Future trends
		References
	Chapter 10: Alternatives to cork in wine bottle closures
		10.1. Introduction
		10.2. The key property of closures: Oxygen transmission
		10.3. The various closure types
			10.3.1. Synthetic corks
			10.3.2. Screwcaps
			10.3.3. Diam closures
			10.3.4. Zork closures
			10.3.5. Vino-Lok closures
			10.3.6. The crown cap closure
		10.4. Conclusions and future trends
		References
	Chapter 11: Organic wine-making from the research project to the legal framework and a growing sector
		11.1. Introduction
			11.1.1. The EU ORWINE project
			11.1.2. The concept of organic wine
				11.1.2.1. Consumers opinion
				11.1.2.2. Market demands
				11.1.2.3. Producers attitude and potentiality
		11.2. Organic wine: A synthesis attempt
			11.2.1. Demand and need to decrease treatments and additives in organic winemaking
			11.2.2. The real hot issue: SO2 use and limitations
			11.2.3. Evaluation of traditional and modern innovative techniques and practices
			11.2.4. Strategies to improve organic wine quality and to lower the use of SO2
		11.3. Harmonization process
			11.3.1. How to deal with the production needs of ``special wines´´?
			11.3.2. Links with non-European organic regulations
		11.4. After ORWINE project, research needs
		11.5. From ORWINE to the EU regulation on organic wine-making
		11.6. Organic wine a sector that continues to grow
		Acknowledgments
		References
		Further reading
Part Two: Managing wine sensory quality
	Chapter 12: Yeast selection for wine flavor modulation
		12.1. Introduction
		12.2. Key issues in efficient wine yeast selection
			12.2.1. Combining fermentation qualities and reducing off-flavor production
			12.2.2. Tailoring a yeast strain in accordance with a wine type
		12.3. Selection of natural yeast isolates: Methods and limits
		12.4. Metabolic engineering
		12.5. Conventional genetic strategies
			12.5.1. Random mutagenesis
			12.5.2. Yeast breeding
				12.5.2.1. Homo- and heterothallism
				12.5.2.2. Hybridization
				12.5.2.3. Breeding programs assisted by measuring trait values
				12.5.2.4. Breeding programs assisted by molecular markers
		12.6. Mixed cultures as an alternative strategy
		12.7. Yeast by-products affecting wine aromas: Glycerol
			12.7.1. Organoleptic contribution of glycerol
			12.7.2. Metabolic pathways and genetic control
			12.7.3. Factors affecting glycerol production
			12.7.4. Glycerol over-production: An example of central metabolism alteration and its aromatic consequences
		12.8. Yeast by-products affecting wine aromas: Acetic acid
			12.8.1. Organoleptic contribution of acetic acid
			12.8.2. Metabolic pathway and genetic control of acetic acid
			12.8.3. Factors influencing acetic acid production
		12.9. Yeast by-products affecting wine aromas: Hydrogen sulphide
			12.9.1. Hydrogen sulphide impact
			12.9.2. Metabolic pathway and genetic control of hydrogen sulphide
			12.9.3. Factors affecting hydrogen sulphide production
			12.9.4. Yeast strain influence on hydrogen sulphide production
		12.10. Yeast by-products affecting wine aromas: Higher alcohols
			12.10.1. Aromatic impact overview of higher alcohols and general directions for yeast selection
			12.10.2. Metabolic pathways and genetic control of higher alcohols in yeast
				12.10.2.1. Transamination step of Ehrlich pathway
				12.10.2.2. Decarboxylation in the Ehrlich pathway
				12.10.2.3. Reduction of fusel aldehydes in higher alcohols
			12.10.3. Genetic regulation of the Ehrlich pathway during the alcoholic fermentation
			12.10.4. Factors affecting higher alcohol production
			12.10.5. Contribution of Saccharomyces and non-Saccharomyces strains
			12.10.6. Genetic modification of higher alcohols pathways for aroma profiling
		12.11. Yeast by-products affecting wine aromas: Esters
			12.11.1. Aromatic impact overview of esters and general directions for yeast selection
			12.11.2. Metabolic pathways and genetic control of esters production in S. cerevisiae
				12.11.2.1. Acetic esters of higher alcohols
				12.11.2.2. Ethyl esters of fatty acids
			12.11.3. Factors affecting ester production
			12.11.4. Limits in the genetic modification of ester production
		12.12. Varietal aromas resulting from grape precursor biotransformation
			12.12.1. Phenolic acids
				12.12.1.1. Organoleptic impact of volatile phenols
				12.12.1.2. Factors affecting vinyl phenol precursors in grape must
				12.12.1.3. Cinnamate decarboxylase and related gene in S. cerevisiae
			12.12.2. Terpenes and their glycoconjugate precursors
				12.12.2.1. Aromatic impact of terpenic compounds
				12.12.2.2. β-Glucosidase activity
				12.12.2.3. Modulation of yeast terpenes biosynthesis
			12.12.3. Volatile thiols
				12.12.3.1. Aromatic impact of volatile thiols
				12.12.3.2. Identification of S-conjugate cysteine precursors
				12.12.3.3. Yeast β-lyase activity and related genes
				12.12.3.4. Genetic control of thiols bioconversion
				12.12.3.5. Factors influencing volatile thiols in wines
				12.12.3.6. Genetic application for strains selection
				12.12.3.7. Perspectives for selecting strains producing higher amounts of volatile thiols
			12.12.4. Red wine aromas derived from inodorous precursors
		12.13. Conclusions and future trends
			12.13.1. Selection methods
			12.13.2. Selection criteria
		References
	Chapter 13: Brettanomyces/Dekkera off-flavor and other microbial spoilage
		13.1. Introduction
		13.2. Brettanomyces/Dekkera off-flavors and their related metabolism
		13.3. Brettanomyces/Dekkera taxonomy and phylogenetic relationships with other wine yeasts
		13.4. Brettanomyces/Dekkera physiology
			13.4.1. Carbon and nitrogen source requirement
			13.4.2. Aerobic vs anaerobic conditions (Custers effect)
			13.4.3. Acetic acid production
			13.4.4. Temperature, pH, ethanol, and other factors influencing growth
		13.5. Other defects associated with the presence of Brettanomyces/Dekkera
			13.5.1. Mousy off-flavor
			13.5.2. Biogenic amines
		13.6. Other faults associated with microbial spoilage
			13.6.1. Acetic acid
			13.6.2. Lactic acid
			13.6.3. Mannitol taint
			13.6.4. Bitterness
			13.6.5. Ropiness
			13.6.6. Film-forming yeasts
			13.6.7. Other defects associated with yeast
			13.6.8. Geranium off-odor
			13.6.9. Tartaric acid degradation
			13.6.10. Cork taint and other related taints
		13.7. Detection and methods to prevent and correct Brettanomyces bruxellensis spoilage faults
			13.7.1. Methods to detect microbial spoilage
			13.7.2. Prevention and remediation of Brettanomyces bruxellensis
				13.7.2.1. Compounds with antimicrobial action against Brettanomyces bruxellensis
				13.7.2.2. Effect of physical treatment against Dekkera/Brettanomyces bruxellensis
				13.7.2.3. Barrel sanitation
		13.8. Conclusions
		References
	Chapter 14: Reducing cork taint in wine
		14.1. Introduction: Cork taint
		14.2. Compounds causing musty-moldy off-flavors
			14.2.1. Chlorinated anisoles
			14.2.2. Tribromoanisole
			14.2.3. 2-Methoxy-3,5-dimethylpyrazine
			14.2.4. Guaiacol
			14.2.5. Geosmin
			14.2.6. 2-Methylisoborneol, 1-octen-3-one, 1-octen-3-ol
		14.3. Quality management and control methods for wine corks: Introduction
		14.4. Test procedures to evaluate the quality of cork stoppers
			14.4.1. Catalogue of methods for testing of corks
		14.5. Standard test procedures
			14.5.1. Sampling
			14.5.2. Visual control of corks
			14.5.3. Cork dimensions
			14.5.4. Sensory examination of corks
			14.5.5. Dry weight and specific weight of corks
			14.5.6. Humidity of the cork
			14.5.7. Proof of hydrogen peroxide in corks
			14.5.8. Test bottling
			14.5.9. Control of extraction forces
		14.6. Additional test procedures
			14.6.1. Determination of the content of cork dust
			14.6.2. Phenolic compounds in corks
			14.6.3. Test of cork coating/surface treatment
			14.6.4. Testing of the cork elasticity
		14.7. Handling and processing of corks and bottles during bottling and storage
			14.7.1. Receiving incoming goods
			14.7.2. Storing conditions for corks
			14.7.3. Bottles: Filling and storage conditions
				14.7.3.1. Control of the bottles
				14.7.3.2. Filling level, headspace in bottles
				14.7.3.3. Sealing of bottles, corking
				14.7.3.4. Storage of bottles
		14.8. Prevention of musty-moldy off-flavors in the cellar environment
			14.8.1. Cellar contamination with halogenated anisoles
			14.8.2. Avoidance of haloanisole contamination in the cellar environment
		14.9. Methods to reduce musty off-flavors in contaminated wines
			14.9.1. Adsorbent charcoal
			14.9.2. Polyethylene
			14.9.3. Inert yeast particles
			14.9.4. Filtration with special filter sheets
				14.9.4.1. Filtration effect on TCA/TBA contents
				14.9.4.2. Sensorial effect of the filtration
				14.9.4.3. Capacity of the filter sheets
				14.9.4.4. Aluminum ion migration
		References
	Chapter 15: Ladybug (Coccinellidae) taint in wine
		15.1. Introduction
		15.2. Quality implications
		15.3. Causal compound(s)
		15.4. Threshold and tolerances
		15.5. Other Coccinellidae species
		15.6. Postharvest prevention and remediation
		15.7. Conclusions and further research
		References
		Further reading
	Chapter 16: Understanding and controlling nonenzymatic wine oxidation
		16.1. Introduction
		16.2. Oxygen in wine
		16.3. Polyphenol oxidation
		16.4. Oxidation of aroma compounds
		16.5. Measures of wine oxidation status
		16.6. White wine oxidation
		16.7. Red wine oxidation
			16.7.1. Implications of microoxidation
			16.7.2. Implications of bottle closure type
		16.8. Influence of wine antioxidants
			16.8.1. Sulfur dioxide
			16.8.2. Glutathione
			16.8.3. Ascorbic acid
		16.9. Concluding remarks
		References
	Chapter 17: Aging and flavor deterioration in wine
		17.1. Introduction: Aging
		17.2. Sensory changes during storage/aging
		17.3. Aromatic compounds related to flavor deterioration
			17.3.1. Aldehydes
			17.3.2. Esters
			17.3.3. Terpenes
			17.3.4. C13 norisoprenoid compounds
			17.3.5. Furanoic compounds
			17.3.6. Higher alcohols and fatty acids
			17.3.7. Volatile phenols
			17.3.8. Sulfur compounds
		17.4. Chemical reactions of aging
			17.4.1. Oxidation processes
				17.4.1.1. Reactive oxygen species
			17.4.2. Esterification and ester hydrolysis
			17.4.3. Maillard reactions
			17.4.4. Glycoside hydrolyzation
			17.4.5. Aldol condensation
		17.5. Factors influencing the aging process and future trends in research
			17.5.1. Future trends
		17.6. Untypical aging (UTA) off-flavor
			17.6.1. Introduction
			17.6.2. Chemical formation of o-aminoacetophenone (AAP) and oenological untypical aging inhibition
			17.6.3. o-Aminoacetophenone and other aroma compounds responsible for untypical aging
			17.6.4. Viticultural factors-Untypical aging prevention
			17.6.5. Indoleacetic acid, antioxidants and indicator precursors
			17.6.6. Future trends
		References
	Chapter 18: Biogenic amines and the winemaking process
		18.1. Introduction
		18.2. Incidence of biogenic amines in wines and health effects
			18.2.1. Pharmacological and toxicological aspects
				18.2.1.1. Histamine
				18.2.1.2. Tyramine
				18.2.1.3. Putrescine and cadaverine
				18.2.1.4. Phenylethylamine
				18.2.1.5. Tryptamine
			18.2.2. Detoxification of biogenic amines
		18.3. Formation of biogenic amines during the winemaking process
			18.3.1. Origin of biogenic amines during wine manufacture
			18.3.2. Technological factors and practices
			18.3.3. Molecular approaches for understanding biogenic amines formation during winemaking
		18.4. Methods of detection and quantification of biogenic amines in wines
			18.4.1. Qualitative methods
				18.4.1.1. Screening of decarboxylase-positive microbes using selective media
				18.4.1.2. Enzymatic detection
				18.4.1.3. Thin-layer chromatography
				18.4.1.4. Polymerase chain reaction (PCR) detection of decarboxylase genes
			18.4.2. Quantitative methods
				18.4.2.1. Gas chromatography
				18.4.2.2. Liquid chromatography
				18.4.2.3. Capillary electrophoresis
		18.5. Methods and tools to prevent the presence of biogenic amines in wines
		18.6. Future trends
		References
	Chapter 19: Fortified wines
		19.1.1. Introduction
		19.1.2. Different Sherry wines
		19.1.3. Aromas of the biological aging
			19.1.3.1. Higher alcohols
			19.1.3.2. Esters
			19.1.3.3. Carbonyl and derivative compounds
			19.1.3.4. Lactones
		19.1.4. Aroma compounds of the oxidative aging
			19.1.4.1. Higher alcohols
			19.1.4.2. Fatty acids
			19.1.4.3. Esters
			19.1.4.4. Carbonyl and derivative compounds
			19.1.4.5. Lactones
			19.1.4.6. Volatile phenols
		19.1.5. Sweet Sherry wines
		19.1.6. Odorant series interpreting the aroma of Sherries
			19.1.6.1. Using odor activity values (OAVs)
				19.1.6.1.1. Aroma profile of wines
				19.1.6.1.2. Contribution flor yeast/barrels wood
				19.1.6.1.3. Establish footprints
			19.1.6.2. Using GC-O techniques
				19.1.6.2.1. Results of GC-O in Sherries
			References
		19.2.1. Viticulture
			19.2.1.1. Port wine region
			19.2.1.2. Cultivars
			19.2.1.3. Production
			19.2.1.4. Aging
		19.2.2. Key aroma compounds in Port wine
			19.2.2.1. General characteristics
			19.2.2.2. Formation/degradation of varietal compounds
			19.2.2.3. Volatile sulfur compounds
			19.2.2.4. Aldehydes
			19.2.2.5. Acetals
			19.2.2.6. Lactones and furanic compounds
		19.2.3. Aged Port wine flavor: A systems chemistry approach
			19.2.3.1. Fundamentals
			19.2.3.2. Major flavor generation mechanisms during aging
			19.2.3.3. Network reconstruction
		19.2.4. Concluding remarks
			References
	Chapter 20: Botrytized wines
		20.1. Introduction
		20.2. Noble rot
			20.2.1. General information on Botrytis cinerea
			20.2.2. Noble rot development on grapes
			20.2.3. Sour or acid rot
		20.3. Composition of Botrytized grapes and musts, and effects on wine
			20.3.1. Sugar and acid concentrations
			20.3.2. The glycerol/gluconic acid pair and other polyols
			20.3.3. Phenolic composition
			20.3.4. Polyosides associated with botrytization
			20.3.5. Nitrogen composition and vitamins
			20.3.6. Carbonyl substances combining with SO2
		20.4. Aroma composition of Botrytized wines-Impact of grape Botrytization
			20.4.1. Introduction
			20.4.2. Grape and wine aroma composition
				20.4.2.1. Furanones
				20.4.2.2. Strecker aldehydes (phenylacetaldehyde and methional)
				20.4.2.3. Lactones
				20.4.2.4. Varietal thiols and their S-conjugate aroma precursors
				20.4.2.5. Monoterpenes and C13 norisoprenoids
				20.4.2.6. Fermentative esters
				20.4.2.7. Miscellaneous
		20.5. Vinification of noble rot sweet wines
			20.5.1. Harvesting and transporting botrytized grapes
			20.5.2. Juice extraction through pressing and clarification
			20.5.3. Selective cryoextraction or cold pressing
			20.5.4. SO2 supplementation
			20.5.5. Settling noble rot grape juice
			20.5.6. Fermentation process
				20.5.6.1. Grape and must microflora
				20.5.6.2. Preventing fermentation difficulties
				20.5.6.3. Practical aspects of fermentation
				20.5.6.4. Stopping fermentation or ``mutage´´
		20.6. Wine aging
		20.7. Tokaji wines
		20.8. German Botrytized wines (Trockenbeerenauslese)
		References
	Chapter 21: Postharvest physiology of wine grape dehydration
		21.1. Introduction
		21.2. General metabolism
			21.2.1. Physical changes
			21.2.2. Biochemical considerations
		21.3. Changes in specific compounds
			21.3.1. Polyphenols
			21.3.2. Aroma compounds
		21.4. Vinification
			21.4.1. General considerations
			21.4.2. Sweet white and red wines from dehydrated grapes
				21.4.2.1. General implications
				21.4.2.2. Red wines
				21.4.2.3. White wines
			21.4.3. Dry red wine from dehydrated grapes: The case of Amarone
				21.4.3.1. Main factors of the dehydration process for Amarone wine production
				21.4.3.2. Biochemical and chemical aspects
				21.4.3.3. Amarone vinification
				21.4.3.4. The ``Ripasso´´ and ``Governo´´ techniques for producing alternative dry red wines from dehydrated grapes
		21.5. Concluding remarks
		Acknowledgments
		References
	Chapter 22: Managing the quality of icewines
		22.1. Introduction
		22.2. What is icewine? Regulation of icewine production
		22.3. Viticulture
			22.3.1. Cultivar selection
			22.3.2. Viticultural practices
				22.3.2.1. Site selection
				22.3.2.2. Disease management
				22.3.2.3. Bird predation
				22.3.2.4. Crop level
				22.3.2.5. Harvest date
		22.4. Harvest considerations
			22.4.1. Hand harvest
			22.4.2. Mechanical harvest
			22.4.3. Pressing
		22.5. Oenology
			22.5.1. Fermentation kinetics
			22.5.2. Yeast strain selection
				22.5.2.1. General considerations
				22.5.2.2. Performance of specific yeast strains
				22.5.2.3. Yeast acclimation
		22.6. Chemical analysis of icewines
			22.6.1. Soluble solids
			22.6.2. Titratable acidity
			22.6.3. Nitrogen
			22.6.4. Ethanol and residual sugar
			22.6.5. Volatile acidity
			22.6.6. Glycerol
			22.6.7. Polyphenols
			22.6.8. Volatile compounds
		22.7. Sensory properties of icewine
		22.8. Authentication
		22.9. Future trends
		References
		Further reading
	Chapter 23: Managing the quality of sparkling wines
		23.1. Types of sparkling wines: Definitions and characteristics
		23.2. Description of the organoleptic characteristics of sparkling wines
			23.2.1. Foam
				23.2.1.1. Physical characteristics
				23.2.1.2. Chemical characteristics
			23.2.2. Phenolic compounds and color
			23.2.3. Volatile compounds and aroma
		23.3. Factors affecting sensory quality
			23.3.1. Foam quality
				23.3.1.1. Conditioning factors
				23.3.1.2. Foam sensory descriptors
			23.3.2. Color changes during elaboration process
			23.3.3. Aroma changes during elaboration process
		23.4. Quality control
		23.5. Conclusions
		References
Index
Back Cover




نظرات کاربران