ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Magnetostatic Waves in Inhomogeneous Fields

دانلود کتاب امواج مغناطیسی در میدان های ناهمگن

Magnetostatic Waves in Inhomogeneous Fields

مشخصات کتاب

Magnetostatic Waves in Inhomogeneous Fields

ویرایش: 1 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0367494477, 9780367494476 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 416 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Magnetostatic Waves in Inhomogeneous Fields به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب امواج مغناطیسی در میدان های ناهمگن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب امواج مغناطیسی در میدان های ناهمگن



امواج مغناطیسی (MSW) در رسانه های مغناطیسی الکتریک برای ایجاد دستگاه های مختلف بسیار کارآمد برای پردازش اطلاعات آنالوگ در محدوده مایکروویو اساسی هستند. این دستگاه‌ها شامل فیلترهای مختلف، خطوط تاخیری، شیفترهای فاز، مبدل‌های فرکانس، دستگاه‌های غیر متقابل و غیرخطی و غیره هستند. امواج مغناطیسی و توزیع آنها در فیلم ها و ساختارهای مغناطیسی غیریکنواخت انتشار امواج مغناطیس استاتیک در محیط های مغناطیسی الکتریک با اثرات فیزیکی متعدد و بسیار متنوع همراه است و آنها را به شدت از امواج الکترومغناطیسی معمولی در محیط های همسانگرد متمایز می کند. نویسندگان به خواص پراکندگی و غیر خطی بودن بردارهای سرعت فاز و گروه و همچنین انتشار غیر متقابل می پردازند.

ویژگی های کلیدی

  • ابزارهای ریاضی مورد استفاده در محاسبه خواص امواج مغناطیس استاتیک
  • شامل بررسی ادبیات فعلی امواج مغناطیس استاتیک و ساختارهای دامنه در فیلم‌های گارنت-فریت
  • مسئله تبدیل امواج مغناطیسی استاتیک به امواج الکترومغناطیسی را در نظر می گیرد

توضیحاتی درمورد کتاب به خارجی

Magnetostatic waves (MSWs) in magnetodielectric media are fundamental for the creation of various highly efficient devices for analog information processing in the microwave range. These devices include various filters, delay lines, phase shifters, frequency converters, nonreciprocal and nonlinear devices, and others.

Magnetostatic Waves in Inhomogeneous Fields examines magnetostatic waves and their distribution in non-uniformly magnetized films and structures. The propagation of magnetostatic waves in magnetodielectric environments is accompanied by numerous and very diverse physical effects, sharply distinguishing them from ordinary electromagnetic waves in isotropic media. The authors address dispersion properties and noncollinearity of phase and group velocity vectors, as well as non-reciprocal propagation.

Key Features

  • Offers mathematical tools used in the calculation of properties of magnetostatic waves
  • Includes a current literature review of magnetostatic waves and domain structures in garnet–ferrite films
  • Considers the issue of converting magnetostatic waves into electromagnetic ones


فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Introduction
List of frequently used abbreviations
Chapter 1: Magnetostatic waves and domain structures in ferrite–garnet films (literature review)
	1.1: Oscillations and waves in magnetically ordered media in the approximation of magnetostatics
	1.2: Conditions of existence and dispersion of MSWs in magnetic films and structures on their basis
	1.3: Spreading of SMSW (surface magnetostic waves) in an arbitrary direction along the film plane
	1.4: Distribution of SMSW in ferrite films and structures under the conditions of inhomogeneous magnetization
	1.5: Distribution of SMSW in ferrite films and structures with periodic inhomogneities
	1.6: Conversion of a magnetostatic wave into electromagnetic on the field inhomogeneity
	1.7: Domain structures in ferrite films, FMR and MSW under the conditions of the existence of domain structures
	1.8: Features of magnetostatic waves in the long-wave limit
	1.9: Use of FMR, MSW and domains in ferritle films for information processing devices
	1.10: Basic issues for further explanation
	1.11: Some new directions of research of MSW
Chapter 2: Mathematical apparatus used in calculating the properties of magnetostatic waves
	2.1: Landau–Lifshitz equation
	2.2: Dynamic sensitivity of a magnetic medium
	2.3: Walker's equation
		2.3.1: Walker's equation with an arbitrary susceptibility tensor
		2.3.2: Walker equation in the Damon–Eshbach problem
	2.4: Dispersion ration for magnetic plate with free surface
		2.4.1: Basic equations
		2.4.2: Border conditions
		2.4.3: Complete problem statement
		2.4.4: Solving equations without boundary conditions
		2.4.5: Frequency regions of body and surface waves
		2.4.6: Derivation of the dispersion relation from the solution and boundary conditions
		2.4.7: Transition to the polar coordinate system
		2.4.8: Potentials
		2.4.9: Fields
		2.4.10: Magnetization
		2.4.11: Cutoff angle for the Damon-Eshbach ratio
		2.4.12: Damon–Eshbach dispersion relation in the Cartesian coordinate system
	2.5: Dispersion ratio for metal–dielectric–ferrite–metal (MDFDM) structure and its particular cases
		2.5.1: General derivation of the dispersion relation
		2.5.2: Dispersion relation for an arbitrary direction of propagation of the phase front
		2.5.3: Transition to the polar coordinate system
		2.5.4: Passage to the limit for dispersion relations for other structures
	2.6: Dispersion ration for metal–dielectric–ferrite–ferrite–dielectric–metal structure (MDFFDM)
		2.6.1: General conclusion and character of the dispersion relation
		2.6.2: Passage to the limit for dispersion relations for other structures
	2.7: Phase and group velocities, phase rise and delay time of wave beams SMSW
		2.7.1: Phase and group velocities
		2.7.2: Phase run and delay time
	2.8: System of equations for the Hamilton–Auld method
		2.8.1: General derivation of the Hamilton–Auld equations
		2.8.2: Transition to the polar coordinate system
	2.9: Derivatives from the dispersion relationship for the ferritic–dielectric–metal structure
	2.10: Equivalence of different kinds of equations of dynamics in classical mechanics
	2.11: Cauchy's proble in the distribution of SMSW
	2.12. Technique for calculating the trajectories of wave beams of MSW in an inhomogeneous field
Chapter 3: Magnetostatic waves in homogenized magnetized ferrite films and structures on their basis
	3.1: Conditions of existence and dispersion of SMSW (surface magnetostatic waves) in ferrite films and structures on their basis
		3.1.1: Dispersion properties of forward and backward SMSWs in the FDM structure
		3.1.2: Experimental study of the dispersion of the SMSW in the structure of the FDM
			3.1.2.1: Basic experimental technique
			3.1.2.2: Results of an experimental study of the dispersion properties of SMSW
		3.1.3: On the possibility of experimental observation of backward waves
	3.2: Distribution of SMSW in a two-component environment consists of a free ferrite film and FDM (ferrite–dielectric–metal) structure
		3.2.1: Analysis of the refraction of the SMSW using the method of isofrequency curves
			3.2.1.1: Formulation of the problem
			3.2.1.2. Analysis of orientation dependences by the method of isofrequency curves
			3.2.1.3: Strip orientation along the field
			3.2.1.4: The orientation of the strip is arbitrary
			3.2.1.5: Evaluation of the possibility of manifestation of the effects of dispersive splitting of a wave beam under the conditions of a real experiment
		3.2.2: Experimental study of the refraction of the SMSW
			3.2.2.1: Strip orientation along the field
			3.2.2.2: The orientation of the strip is arbitrary
		3.2.3: Reflection coefficient of the SMSW from the interface
	3.3: Dispersional properties of SMSW in structures containing two ferrite layers
		3.3.1: Ferrite–ferrite (FF) structure
		3.3.2: Metal–dielectric–ferrite–ferrite–dielectric–metal structure (MDFFDM)
		3.3.3: Experimental study of the variance of SMSW
Chapter 4: Methods of research and analysis of the propagation of SMSW under conditions of magnetization by a longitudinal inhomogeneous field
	4.1: Basic types of inhomogeneities of a magnetizing field
	4.2: Spatial configuration of the areas if distribution of the SMSW
	4.3: Methods for analysis of SMSW propation under the conditions of inhomogeneous binding (frequency curves and Hamilton–Auld)
		4.3.1: Isofrequency curve method
		4.3.2: The Hamilton–Auld method
		4.3.3: Comparison of methods for analyzing SMSW trajectories
	4.4: Distribution of SMSWs in ferrite films with free surfaces
		4.4.1: Analysis of SMSW trajectories by the method of isofrequency curves
			4.4.1.1: Linearly inhomogeneous field
			4.4.1.2: Valley-type field
			4.4.1.3: Shaft-type field
		4.4.2: Analysis of SMSW trajectories by the Hamilton–Auld method
			4.4.2.1: Linearly inhomogeneous field
			4.4.2.2: Valley-type field
			4.4.2.3: Shaft-type field
	4.5: Distribution of SMSW in the ferrite–metal structure
		4.5.1: Linearly inhomogeneous field
		4.5.2: Valley-type field
		4.5.3: Shaft-type field
		4.5.4: Channels of the first and second type
	4.6: Distribution of SMSWs in the structure of ferrite–dielectric metal
		4.6.1: Analysis of SMSW trajectories by the method of isofrequency curves
			4.6.1.1: Linearly inhoimogeneous field
			4.6.1.2: Valley-type field
			4.6.1.3: Shaft-type field
			4.6.1.4: General comment
		4.6.2: Analysis of SMSW trajectories by the Hamilton–Auld method
			4.6.2.1: Linearly inhomogeneous field
			4.6.2.2: Valley-type field
			4.6.2.3: Shaft-type field
	4.7: Phase rise and delay time
		4.7.1: Linearly inhomogeneous field
		4.7.2: Valley-type field
		4.7.3: Shaft-type field
	4.8: Experimental study of SMSW trajectories
		4.8.1: The main parameters of the experiment
		4.8.2: Linearly inhomogeneous field
		4.8.3: Valley-type field
		4.8.4: Shaft-type field
		4.8.5: Change of various parameters of the experiment
Chapter 5: Propagation of wave beams of finite width in inhomogeneous magnetized ferrite films
	5.1: Spatial transformation of wide beams of SMSW propagating in inhohogensouly magnetized films
		5.1.1: Linearly inhomogeneous field
		5.1.2: Valley-type field
		5.1.3: Shaft-type field
	5.2: Method for analysis of amplitude-frequency and phase-frequency characteristics of transmission lines of SMSW
		5.2.1: General scheme of the method for calculating the frequency phase responses
		5.2.2: Frequency response diagram
		5.2.3: PFC construction scheme
	5.3: Amplitude-frequency characteristics of transmision lines on ferrite films magnetized by fields of different configurations
		5.3.1: Homogeneous field
		5.3.2: Linearly inhomogeneous field
		5.3.3: Valley-type field
		5.3.4: Shaft-type field
	5.4: Ampliture–frequency characteristics of waveguard channel for SMSW formed by inhomogeneous ‘shaft’-type field
		5.4.1: Changing the length of the channel
		5.4.2: Changing the channel excitation conditions
			5.4.2.1: Symmetrical arousal
			5.4.2.2: Asymmetrical excitement
			5.4.2.3: Transverse shift of the emitting transducer
	5.5: Amplitude–frequency characteristics of the transmission line to the SMSW at an arbitrary orientation of the magnetizing field
		5.5.1: The general geometry of two variants of the location of the transducers: mutually opposite and mutually shifted
		5.5.2: Filtration of the first type, mutually opposite geometry
		5.5.3: Filtering of the second type, mutually shifted geometry
	5.6: Experimental study of SMSW beams of finite width and amplitude–frequency characteristics
		5.6.1: Linearly inhomogeneous field
		5.6.2: Valley type field
		5.6.3: Shaft-type field
Chapter 6: Amplitude–frequency properties of trasmission lines on magnetostatic waves taking into account the phase run
	6.1: General characteristics of typical transmission lines to SMSW
	6.2: General case of waves in a magnetic medium
	6.3: The case of surface magnetostatic waves (SMSW)
	6.4: Amplitude transmission line characteristics and its different geometric parameters
		6.4.1: Dependence of the amplitude of the transmitted signal on frequency when changing the relative orientation of the transducers
		6.4.2: Dependence of the amplitude of the transmitted signal on the frequency with a change in the width of the wave beam
		6.4.3: Dependence of the amplitude of the transmitted signal on the relative orientation of the transducers at a fixed signal frequency
		6.4.4: Dependence of the phase of the transmitted signal on frequency when changing the relative orientation of the transducers
	6.5: Effect of the phase run on AFC
		6.5.1: Geometry of the problem with relative mutual displacement of transducers
		6.5.2: Formation of the amplitude–frequency characteristic
		6.5.3: Formation of the phase-frequency response
		6.5.4: The influence of the length of the transducers on the structure of the frequency response
	6.6: Deformation of the wave front of surface magnetostatic waves in ferrite films magnetized by linearly inhomogeneous field
		6.6.1: General geometry of the problem
		6.6.2: Various cases of orientation of the emitting transducer
			6.6.2.1: Orientation corresponding to j= 30°
			6.6.2.2: Other orientations
	6.6: General character of transformation of the area of distribution of SMSW when various parameters of the structure change
		6.6.1: Changing the orientation of the emitting transducer
		6.6.2: Frequency change
		6.6.3: Changing the gradient of the field
	6.7: Recommendations for optimizing the parameters of the transmission line of the SMSW
Chapter 7: Use of magnetostatic waves in inhomogeneously magnetic ferrite films for information processing devices and other technical applications
	7.1: Brief overview of possible technical applications
	7.2: Wave guiding structures for SMSW on ferrite films magnetized by a shaft-type field
	7.3: Optimization of the shape of SMSW converters for devices on inhomogeneous magnetized ferrite films
	7.4: Multi-channel filter on ferrite film magnetized by a valley-type field
	7.5: Multi-channel filter on packed ferrite structures
	7.6: Microwave signal delay line on a ferrite film magnetized by a shaft-type field
	7.7: Measurements of parameters of yttrium iron garnet films with a complex anisotropy character
	7.8: Study of the spatial distribution of the magnetic field with the help of the sensor on the SMSW
	7.9: Use of the transmission line to SMSW to determine the orientation of the magnetic field
Bibliography
Index




نظرات کاربران