ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Magnetic nano- and microwires design, synthesis, properties and applications

دانلود کتاب طراحی، سنتز، خواص و کاربردهای نانو و میکروسیم های مغناطیسی

Magnetic nano- and microwires design, synthesis, properties and applications

مشخصات کتاب

Magnetic nano- and microwires design, synthesis, properties and applications

ویرایش: 2nd ed 
نویسندگان:   
سری: Woodhead Publishing series in electronic and optical materials 
ISBN (شابک) : 9780081028339, 0081028334 
ناشر: Woodhead Publishing 
سال نشر: 2020 
تعداد صفحات: 1012 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 148 مگابایت 

قیمت کتاب (تومان) : 32,000



کلمات کلیدی مربوط به کتاب طراحی، سنتز، خواص و کاربردهای نانو و میکروسیم های مغناطیسی: خطوط برق، مواد مغناطیسی، نانوسیم ها، کتاب های الکترونیکی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Magnetic nano- and microwires design, synthesis, properties and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی، سنتز، خواص و کاربردهای نانو و میکروسیم های مغناطیسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover......Page 1
Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications......Page 4
Copyright......Page 5
Contents......Page 6
Contributors......Page 16
Preface......Page 26
Part One: Design, synthesis, and properties......Page 28
1.1. Introduction......Page 30
1.2.1. Magnetic nanowires with modulated diameter......Page 33
1.2.2. Composition modulation: Multilayered nanowires......Page 36
1.2.3. Relative orientation modulation: Radial nanowire array......Page 38
1.3.1. Self-sustaining interconnected nanowire networks from ion-irradiated 3D polymeric templates......Page 40
1.3.3. Self-sustaining interconnected nanowire network 3D structures from 3D AAO templates......Page 42
1.3.3.1. Fabrication process and morphological description of the structures......Page 43
References......Page 45
2.1. Introduction......Page 48
2.2. Atomic layer deposition technique......Page 49
2.3. ALD on nanoporous templates: Tailored nanowire arrays......Page 54
2.4. Magnetic nanotubes......Page 58
2.5. Core-shell magnetic nanostructures......Page 62
2.6. Diameter modulated nanowires......Page 64
2.6.1. Magnetic properties of diameter modulated NiFe nanowire array......Page 68
2.6.2. Micromagnetic simulations of single Ni and NiFe bisegmented diameter modulated nanowires......Page 70
2.6.3. Magnetic properties of diameter modulated FeCo nanowires array......Page 73
2.7. Conclusions......Page 78
References......Page 79
Further reading......Page 87
3.1. Introduction......Page 88
3.2. Nanoporous alumina template synthesis: Hard anodization......Page 90
3.3.1. Metallic flux method......Page 93
3.3.2. Metallic flux nanonucleation (MFNN) method......Page 96
3.4.1. Fe3G4 nanowires: An itinerant metamagnetic compound......Page 97
3.4.2. GdIn3: An intermetallic correlated electron system......Page 101
3.4.3. Ga: A type I like superconductor at low dimension......Page 104
References......Page 109
4.1. Introduction......Page 112
4.2. 3D-nanoprinted scaffolds for permalloy evaporation......Page 113
4.3. Magnetic functionalization of scaffolds through permalloy evaporation......Page 117
4.4. Dark-field magneto-optical Kerr effect (MOKE) magnetometry......Page 118
4.5. Characterization of 3D magnetic domain-wall motion using dark-field MOKE magnetometry......Page 119
4.6. Controlling switching mechanism and domain-wall injection in a suspended 3D nanowire......Page 124
4.7. Summary and outlook......Page 127
References......Page 128
Further reading......Page 129
5.1. Introduction......Page 130
5.2. Synthesis......Page 131
5.2.1. Axial heterostructures......Page 133
5.2.2. Radial heterostructures......Page 136
5.2.3. Nanowire arrays......Page 139
5.2.4. Branched heterostructures......Page 140
5.3. Potential applications......Page 142
5.3.2.1. Unidirectional scattering......Page 144
5.3.2.2. Structural colors......Page 146
5.3.3.1. LEDs......Page 148
5.3.3.2. Solar cells......Page 150
5.3.3.3. Hybrid NW heterostructures......Page 151
5.3.4. Spintronic applications......Page 152
5.4. Future issues and outlook......Page 153
5.5. Summary......Page 154
References......Page 155
6.1. Introduction......Page 162
6.2.1. Polycarbonate membranes......Page 163
6.2.2. Nanoporous alumina membranes......Page 165
6.3.1. Electrochemical cell......Page 166
6.3.2. Annular-shaped working electrodes......Page 167
6.3.4. Tuning of the deposition time......Page 168
6.3.6. Formation of hydrogen bubbles......Page 169
6.3.8. Annular nanochannels......Page 170
6.4.1. Atomic layer deposition......Page 172
6.4.3. Sol-gel method......Page 174
6.4.4. Wetting process......Page 175
6.4.6. Thermal oxidation of nanowires (Kirkendall effect)......Page 176
6.4.8. Hydrothermal process......Page 178
6.5. Magnetism of cylindrical nanotubes......Page 180
6.5.1. Magnetic interactions......Page 181
6.5.2. Magnetization reversal......Page 183
6.5.3. Magnetic domain wall dynamics......Page 185
6.5.4. Exchange bias and thermal effects......Page 186
6.6. Applications of magnetic nanotubes......Page 189
6.7. Conclusions......Page 190
References......Page 191
7.1. Introduction......Page 212
7.2.1.1. General principles......Page 213
7.2.1.2. Morphology and structure......Page 214
7.2.2.2. Structure and formation mechanism of cobalt nanorods and nanowires......Page 216
7.2.2.3. Spontaneous formation of 3D arrays of Co nanorods in solution......Page 217
7.3. Optimization of the magnetic properties of individual wires......Page 219
7.3.1.1. Effect of the shape of elongated magnetic particles on the coercive field......Page 220
7.3.1.2. Mean diameter and aspect ratio......Page 223
7.3.2. Comparison with experimental results......Page 225
7.4. 2D arrays of Co nanorods combining epitaxy and organometallic chemistry......Page 227
7.4.2. Magnetic properties of 2D arrays of perpendicular nanorods......Page 228
7.5.1.1. Influence of the degree of alignment......Page 231
7.5.1.2. Effect of dipolar interactions......Page 233
7.5.1.3. Influence of the packing density......Page 234
7.5.2. Dense arrays of parallel nanorods......Page 235
7.5.3. Consolidation of nanowires......Page 239
7.6. Conclusion......Page 242
References......Page 243
Further reading......Page 246
8.1. Introduction......Page 248
8.2.1. Characterization methods......Page 251
8.2.2. Main aspects of the magnetic behavior......Page 254
8.2.3. Magnetostatic and magnetoelastic contributions......Page 257
8.3. Domain wall propagation......Page 260
8.3.1. Experimental techniques......Page 261
8.3.2. Domain wall velocity and mobility......Page 262
8.3.3. Shape of the propagating domain walls......Page 268
8.3.4. Controlled motion of domain walls......Page 270
8.4. Effects of structural transformations......Page 272
8.5. Final remarks and future work......Page 274
References......Page 277
9.1. Introduction......Page 282
9.2. Evaluation of applicability of glass-coated microwires for use in magnetocalorics......Page 284
9.3. Preparation of glass-coated microwires......Page 286
9.4. Experimental techniques used for characterization of Heusler-type microwires......Page 287
9.5. Magnetic, magnetotransport, and structural properties microwires from Heusler alloys......Page 288
9.5.1. Effect of annealing on magnetic properties of microwires from Heusler alloys......Page 291
9.5.2. Magnetoresistance......Page 302
9.5.3. Structure of Heusler-type microwires......Page 304
9.6. Magnetocaloric effect of Heusler-type microwires......Page 309
9.7. Magnetic hardening and exchange bias effect in Heusler-type microwires......Page 312
Acknowledgments......Page 315
References......Page 316
Further reading......Page 321
Part Two: Magnetization mechanisms, domains and domain walls......Page 322
10.1. Introduction......Page 324
10.2.1. Equation of motion......Page 326
10.2.2. Domain wall velocity......Page 327
10.2.3. Depinning threshold current......Page 328
10.2.4. Domain wall inertia......Page 329
10.3.1. Sample preparation and experimental methods......Page 330
10.3.2. Spin-orbit torque......Page 331
10.3.3. Measurements of domain wall velocity......Page 333
10.3.4. Determination of the magnetic chirality......Page 336
10.3.5. Effective mass of chiral domain walls......Page 339
10.3.6. Synchronous motion of highly packed coupled chiral domain walls......Page 343
10.4. Conclusion......Page 347
References......Page 348
Further reading......Page 351
11.1. Introduction......Page 352
11.1.1.1. The thermal conductivity......Page 354
11.1.1.2. Is the injected current pulse short enough?......Page 355
11.2. Thermal behavior of a ferromagnetic nanostrip......Page 357
11.3. Fabrication of the nanostrips: Some considerations......Page 363
11.4.1. Micromagnetic model at zero or finite uniform temperature......Page 364
11.4.2. Micromagnetic model and heat transport to account for the Joule effects......Page 366
11.5.1.1. Field-driven DW motion......Page 370
11.5.1.2. Current-driven DW motion......Page 373
11.5.2. DW nucleation by a current pulse along a bit line......Page 375
11.5.3.1. Deterministic analysis in the absence of the Joule heating effect......Page 377
11.5.3.2. Current-assisted DW in the presence of Joule heating effect......Page 379
11.6. Conclusions......Page 383
References......Page 384
Further reading......Page 387
12.1.1. Perpendicular magnetic anisotropy......Page 388
12.1.2. The Dzyaloshinskii-Moriya interaction......Page 389
12.1.3. Magnetic domain walls......Page 390
12.2.1. Physical mechanism and device geometries......Page 391
12.2.2. E-field control of PMA......Page 394
12.2.3. E-field control of magnetic DW motion......Page 395
12.2.4. E-field control of DMI......Page 397
12.3. He+ ion irradiation......Page 398
12.3.1. Modification of PMA and DMI by ion irradiation......Page 399
12.3.2. Magnetic domain wall motion and irradiation-induced disorder......Page 400
12.4. Conclusion and outlook......Page 402
References......Page 403
13.1. Introduction......Page 408
13.2. Skyrmion lines and monopoles in nanowires......Page 412
13.3. Emergent electromagnetic fields......Page 418
13.4. Other sample geometries and thermal fluctuations......Page 422
13.5. Conclusions......Page 424
References......Page 425
14.1. Introduction......Page 430
14.2. Hysteresis loops of magnetic nanowires......Page 431
14.3. Magnetic domains and domain walls in straight magnetic nanowires......Page 435
14.4. Domain wall velocity in cylindrical magnetic nanowires......Page 438
14.5. Domains and domain walls in nanowires with geometrical modulations......Page 441
14.6. Domain walls and domains in multisegmented Co/Ni nanowires......Page 446
14.7. Conclusions......Page 448
References......Page 449
15.1.1. Fundamental and technological motivations for domain wall pinning......Page 454
15.1.2. Types of pinning for nanowires......Page 455
15.1.3. Existing theories and experiments......Page 456
15.2.1. Domain walls in cylindrical nanowires......Page 457
15.2.2. Geometry of modulation and potential barrier......Page 458
15.2.3. Magnetic charges......Page 461
15.2.4. Magnetic field generated by the modulation......Page 462
15.2.5. Energy of interaction......Page 466
15.3.1. Abrupt modulation......Page 467
15.3.2. Smooth modulation......Page 469
15.3.3. Protrusion: Double abrupt modulation......Page 471
15.4. Modulation under applied current......Page 474
References......Page 477
16.1. Introduction to the imaging techniques......Page 482
16.2. Synthesis and fabrication of modulated nanowires into the anodic aluminum oxide templates......Page 489
16.2.2. Diameter-modulated nanowires obtained by pulsed anodization......Page 491
16.3. Magnetic characterization of nanowire arrays......Page 494
16.4. Magnetic characterization of individual nanowires with uniform diameter......Page 495
16.5. Study of geometrically modulated nanowires......Page 500
16.6. Multisegmented nanowires......Page 503
16.7. Remarks and conclusion......Page 508
References......Page 509
17.1.1. Magnetic nanostructures......Page 518
17.1.2. Ferromagnetic nanotubes......Page 519
17.1.3. Measuring assemblies versus individual magnetic nanotubes......Page 520
17.2. Magnetoresistance......Page 521
17.3. Torque magnetometry......Page 524
17.4. Magnetic imaging with X-rays......Page 528
17.5. Scanning SQUID microscopy......Page 533
17.6. Magnetic force microscopy......Page 536
17.7. Conclusions and outlook......Page 538
References......Page 539
18.1. Introduction......Page 546
18.2.2. Visualization of surface magnetic domain structures......Page 547
18.2.3. Imaging of the magnetization reversal by MOKE microscopy......Page 551
18.3. Elliptic domain structures......Page 552
18.4. Spiral domain structures......Page 555
References......Page 560
Further reading......Page 561
19.1. Introduction......Page 562
19.2. Sixtus and Tonks measurements......Page 564
19.3. Time-resolved measurement of the DW velocity......Page 567
19.4. Braking and trapping a single-domain wall......Page 574
19.5. Injection of domain walls......Page 580
References......Page 582
20.1. Introduction......Page 586
20.2.1. Fixed frequency (cavity-based) FMR spectroscopy......Page 587
20.2.2. Vector network analyzer-FMR spectroscopy......Page 588
20.2.4. Time-resolved magneto-optical Kerr effect microscopy......Page 590
20.3.1.1. Fabrication of ferromagnetic nanowire arrays in polymeric etched ion-track templates......Page 593
20.3.1.2. Fabrication of ferromagnetic nanowire arrays in alumina templates......Page 594
20.3.2. Static properties of ferromagnetic nanowire arrays......Page 595
20.4.1. Dynamical behavior of saturated isolated ferromagnetic nanowires......Page 598
20.4.2. Dynamical behavior of saturated ferromagnetic nanowire arrays......Page 600
20.4.3. Dynamical behavior of unsaturated ferromagnetic nanowire arrays......Page 607
20.4.4. Dynamical behavior of ferromagnetic nanowire arrays considering the magnetocrystalline anisotropy term......Page 612
20.4.5. Dynamical behavior of multilayer ferromagnetic nanowire arrays......Page 616
20.4.6. Dynamical behavior of gradient ferromagnetic nanowire arrays......Page 621
20.5.1. Fabrication of 3-D ferromagnetic nanowire arrays......Page 622
20.5.2. Static properties of 3-D ferromagnetic nanowire arrays......Page 625
20.5.3. High-frequency behavior of 3-D ferromagnetic nanowire arrays......Page 626
20.6. High-frequency applications and future perspectives of ferromagnetic nanowire arrays......Page 629
References......Page 630
21.1. Introduction......Page 640
21.2.1.1. Static magnetic properties of nanowires......Page 642
21.2.1.2. The role of shape anisotropy: Demagnetizing tensor of nonellipsoidal magnetic elements......Page 643
21.2.1.3. Static dipolar interaction effects in nanowire arrays......Page 645
21.2.1.4. Configurational phase transitions in arrays of nanowires......Page 646
21.3. Magnetic nanowires in electromagnetic fields......Page 649
21.3.1. SWs in magnetic nanowires......Page 652
21.3.1.1. Dipolar-exchange spin-wave modes of individual cylindrical nanowires......Page 653
21.3.1.2. Collective spin-wave modes in arrays of interacting nanowires......Page 659
21.3.1.3. Spin waves in ferromagnetic nanowires with noncircular cross section......Page 661
21.3.1.4. Magnetic structure and dynamics of multilayered nanowires and magnetic nanotubes......Page 663
21.3.1.5. Effects of curvature and torsion on the magnetic dynamics in nanowires and nanotubes......Page 669
21.4.1.1. EMW interactions with nanowire structures......Page 671
21.4.1.2. Shape and size effects in the EMW propagation in nanoarrays......Page 676
21.4.1.3. EMW scattering in nanowires at THz frequencies......Page 680
21.4.2.1. Microwave devices based on magnetic nanowires......Page 684
21.4.2.2. Magnetic nanowire metamaterials: Photonics and plasmonics......Page 687
21.5. Conclusions and future trends......Page 689
References......Page 690
Part Three: Sensing, thermoelectric, robotics, biomedical and microwave applications......Page 700
22.1. Introduction......Page 702
22.2. Fe-Ga alloy nanowires used in tactile sensors......Page 703
22.3. Co/Cu multilayered nanowires for CPP-GMR structures......Page 707
22.4. Nanowires used for biomedical applications......Page 710
22.5. Long-range ordered porous AAO fabricated by double imprinting with line-patterned stamps......Page 716
22.6. Conclusions......Page 717
References......Page 720
23.1. Introduction......Page 724
23.2. Biocompatible magnetic nanowires......Page 725
23.3. Magnetic nanowires for drug delivery......Page 728
23.4. Magnetic nanowires for cancer treatment......Page 730
23.5. Magnetic nanowires as MRI contrast agents......Page 732
23.6. Magnetic nanowire cell scaffolds......Page 733
23.7. Conclusion......Page 735
References......Page 736
24.1. Introduction......Page 742
24.2. Short history......Page 743
24.3. Thermopower......Page 744
24.3.2. Thermopower sources in parallel......Page 747
24.4. Temperature-dependent thermopower......Page 748
24.4.1. Phonon-drag thermopower......Page 749
24.4.2. Influence of nanostructuring......Page 750
24.5. Origin of the magnetic field dependence......Page 752
24.5.1. Magneto-thermopower......Page 754
References......Page 757
25.1. Introduction to magnetostrictive Fe-Ga alloys......Page 764
25.2. Modeling and micromagnetics simulations of Fe-Ga nanowires......Page 771
25.3. Fabrication of Fe-Ga nanowires......Page 776
25.4. Structural and magnetic characterization of Fe-Ga and Fe-Ga/Cu nanowires......Page 778
25.5. Actuation using Fe-Ga/Cu nanowires......Page 786
25.6. Sensing using Fe-Ga/Cu nanowires......Page 794
25.7. Closing remarks......Page 799
References......Page 800
26.1. Introduction......Page 804
26.2. Fabrication techniques for nanowire-based swimmers......Page 807
26.3. Magnetically driven nanowire-based swimmers......Page 809
26.3.1. Corkscrew locomotion......Page 811
26.3.2. Surface-walking locomotion......Page 813
26.3.3. Undulatory (S-like) locomotion......Page 815
26.4. Chemically propelled nanowire-based swimmers......Page 816
References......Page 822
27.1. Introduction......Page 828
27.2. Template-assisted electrodeposition of 3D magnetic NW and NT networks......Page 829
27.3.1. Magnetic and magneto-transport properties of interconnected homogenenous NW networks......Page 832
27.3.2. Interconnected Ni NT networks with controlled structural and magnetic properties......Page 839
27.4.1. Spin-dependent thermoelectric transport in multilayered NW networks......Page 843
27.4.2. Magnetic control in heat management......Page 849
27.5. Conclusion and future perspectives......Page 852
References......Page 853
28.1. Introduction......Page 860
28.2.1. Production......Page 861
28.2.2.1. Magnetic field sensing......Page 864
28.2.2.2. Stress sensing using bistable microwires......Page 867
28.2.2.3. Stress in 3-D printed materials......Page 868
28.2.2.5. Sensing intracranial temperature......Page 870
28.2.2.6. Monitoring intracranial temperature in titanium implants......Page 873
28.2.2.7. Biocompatibility and technical compatibility of glass-coated microwires......Page 874
28.2.2.8. Chemical sensors based on bistable microwires......Page 876
28.2.3. Glass-coated Heusler-based SMART actuators......Page 877
28.2.3.1. Magnetocaloric applications......Page 879
28.2.3.2. Shape memory actuators: SMART actuators......Page 885
28.3. Conclusions......Page 888
Acknowledgments......Page 889
References......Page 890
29.2. Working principle......Page 896
29.2.1. Second harmonic mode......Page 897
29.2.2. Fundamental mode......Page 898
29.3. Circumferential excitation field......Page 899
29.4. Bimetallic wires......Page 902
29.5. Noise and thermal treatment of the wire......Page 903
29.6. Offset......Page 907
29.7. Effect of wire geometry......Page 911
29.8. Applications......Page 913
References......Page 914
Further reading......Page 915
30.1. Introduction......Page 916
30.2. Tunable magnetic configuration in amorphous wire......Page 917
30.2.1. Tuning the anisotropy with applied stress and current annealing......Page 919
30.2.2. Temperature effects......Page 921
30.3. Dynamic permeability in microwires......Page 922
30.3.1. Permeability spectra in wires with near-circumferential anisotropy......Page 923
30.3.2. Permeability spectra in wires with the axial anisotropy near Tc......Page 924
30.4. High-frequency impedance: Effects of external dc field, stress, and temperature......Page 925
30.4.1. Magnetoimpedance plots vs. magnetic field......Page 926
30.4.2. Magnetoimpedance vs. external stress......Page 927
30.4.3. Impedance behavior near the Curie temperature......Page 929
30.5.1. Electric polarization of a ferromagnetic wire......Page 931
30.5.2. Tuning the current distribution and polarization......Page 933
30.5.3. Application to wireless sensors......Page 935
30.6. Microwire composites as artificial dielectrics with tunable permittivity and permeability......Page 936
30.6.1. Effective permeability of wire composites......Page 937
30.6.2. Effective permittivity of composites with finite-length wires (wire dipoles)......Page 938
30.6.3. Effective permittivity of composites with continuous wires......Page 939
References......Page 942
31.1. Introduction......Page 946
31.2. Microwave absorption theory......Page 947
31.3.1. CNT-based polymer composites......Page 950
31.3.3. Graphene-based polymer composites......Page 953
31.3.4. Graphene-based magnetic composites and hybrids......Page 954
31.4. Microwave absorption and metamaterial properties of amorphous wire composites......Page 955
31.5. Tunable microwave absorption of polymer composites incorporating nano-carbon/amorphous wire hybrid fibers......Page 957
31.5.1. Microwave absorption of polymer composites incorporating CNT/amorphous wire hybrid fibers......Page 963
31.5.2. Microwave absorption of polymer composites incorporating rGO/amorphous wire hybrid fibers......Page 969
31.6. Tunable negative permittivity of metacomposites incorporating nano-carbon/amorphous wire hybrid fibers......Page 973
31.6.1. Tunable negative permittivity of metacomposites incorporating CNT/amorphous wire hybrid fibers......Page 974
31.6.2. Tunable negative permittivity of metacomposites incorporating rGO/AW hybrid fibers......Page 978
31.7.1. Summary......Page 982
Acknowledgments......Page 983
References......Page 984
Index......Page 992
Back Cover......Page 1012




نظرات کاربران