دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Heli Helskyaho
سری:
ISBN (شابک) : 1484270312, 9781484270318
ناشر: Apress
سال نشر: 2021
تعداد صفحات: 300
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Machine Learning for Oracle Database Professionals: Deploying Model-Driven Applications and Automation Pipelines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین برای متخصصان پایگاه داده اوراکل: استقرار برنامه های کاربردی مدل محور و خطوط اتوماسیون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سطح کاربری متوسط-پیشرفته
Intermediate-Advanced user level
Table of Contents About the Authors About the Technical Reviewer Acknowledgments Introduction Readers and Audiences Chapter 1: Introduction to Machine Learning Why Machine Learning? What Is Machine Learning? Supervised Learning Algorithms for Supervised Learning Unsupervised Learning Algorithms for Unsupervised Learning Semi-Supervised Learning Reinforcement Learning Self-Supervised Learning The Machine Learning Process Summary Chapter 2: Oracle and Machine Learning Oracle Machine Learning for SQL (OML4SQL) Oracle and Other Programming Languages for Machine Learning R Python Java OCI Data Science Oracle Analytics Cloud AutoML Summary Chapter 3: Oracle Machine Learning for SQL PL/SQL Packages for OML4SQL Privileges Data Dictionary Views Predictive Analytics Data Preparation and Transformations Understanding the Data Preparing the Data PL/SQL API for OML4SQL The Settings Table Model Management Model Evaluation Model Scoring and Deployment Partitioned Model Extensions to OML4SQL Oracle Data Miner and Oracle SQL Developer OML Notebooks Summary Chapter 4: Oracle Autonomous Database for Machine Learning Oracle Cloud Infrastructure and Autonomous Database Oracle Cloud Infrastructure Services Sign-up and Access Oracle Cloud Infrastructure Oracle Autonomous Database Architecture and Components Oracle Autonomous Database Attributes Autonomous Database in Free Trier and Always Free Working with Oracle Autonomous Data Warehouse Provisioning Oracle Autonomous Data Warehouse Connect to Oracle Autonomous Data Warehouse Loading Data to Oracle Autonomous Data Warehouse Step 1: Upload a File from a Local Computer to Object Storage Step 2: Create a Credential Step 3: Load Data to a Table in Autonomous Data Warehouse Import Tables/Schema to Oracle Autonomous Database Oracle Machine Learning with ADW Accessing Oracle Machine Learning Through Oracle Autonomous Database Summary Chapter 5: Running Oracle Machine Learning with Autonomous Database Oracle Machine Learning Collaborative Environment Starting with Oracle Machine Learning Sharing Workspaces with Other Users Creating a Machine Learning Notebook Specifying Interpreter Bindings and Connection Groups Running SQL Scripts and Statements Create and Execute SQL Scripts in a Notebook Run SQL Statements in a Notebook Work with Notebooks to Analyze and Visualize Data Summary Chapter 6: Building Machine Learning Models with OML Notebooks Oracle Machine Learning Overview Supervised Learning and Unsupervised Learning Machine Learning Process Flow Oracle Machine Learning for SQL OML4SQL PL/SQL API and SQL Functions Data Preparation and Data Transformation Split Data Data Transformation Transformation Expressions Binning Transformations Model Creation Model Evaluation Model Application Result Comparison Model Scoring and Model Deployment An Example of Machine Learning Project Classification Prediction Example Data Preparation and Data Transformation Predicting Attribute Importance Model Creation Model Testing and Evaluation Model Application Summary Chapter 7: Oracle Analytics Cloud Data Preparation Data Visualization and Narrate Machine Learning in Oracle Analytics Cloud Summary Chapter 8: Delivery and Automation Pipeline in Machine Learning ML Development Challenges Classical Software Engineering vs. Machine Learning Model Drift ML Deployment Challenges ML Life Cycle Scaling Challenges Model Training Model Inference Input Data Processing Key Requirements Design Considerations and Solutions Automating Data Science Steps Automated ML Pipeline: MLOps Model Registry for Tracking Data Validation Pipeline Abstraction Automatic Machine Learning (AutoML) Model Monitoring Model Monitoring Implementation Scaling Solutions ML Accelerators for Large Scale Model Training and Inference Distributed Machine Learning for Model Training Model Inference Options Input Data Pipeline ML Tooling Ecosystem ML Platforms ML Development Tools ML Deployment Tools Summary Chapter 9: ML Deployment Pipeline Using Oracle Machine Learning Mainstream ML Platforms Oracle Machine Learning Environment Data Extraction in Big Data Environment In-Cluster Parallel Data Processing Automated Data Preparation and Feature Engineering General Data Processing Automation Text Processing Automation AutoML Automated Model Selection Automated Feature Selection Automated Hyperparameter Tuning Scalable In-Database Model Training and Scoring In-Database Parallel Execution via Embedded Algorithms Task-Parallel Execution Data-Parallel Execution Degree of Parallelism Environments In-Database Parallel Execution with Partitioned Models In-Cluster Parallel Execution Model Management Saving Models Using R Datastores in Database Leveraging Open Source Packages TensorFlow Extended (TFX) for Data Validation Schema-Based Validation Training and Serving Skew Detection Drift Detection scikit-multiflow for Model Monitoring Kubeflow: Cloud-Native ML Pipeline Deployment Summary Chapter 10: Building Reproducible ML Pipelines Using Oracle Machine Learning The Environment Setting up Oracle Machine Learning for R Verifying the Oracle Machine Learning for R Installation Verifying OML4R on the Server Side Verifying OML4R on the Client Side Setting up Open Source Components The Data Data Validation and Model Monitoring Implementation TensorFlow Data Validation (TFDV) Data Validation Model Monitoring Tracking and Reproducing ML Pipeline Data Version Control (DVC) Versioning Code, Data, and Model Files Demo with Actual ML Pipeline ML Pipeline Project with Git and DVC Initialization and Configuration Defining and Recording Dependencies with DVC Tracking and Reproducing ML Pipelines with DVC Sample Tracking Use Cases Reproducing ML Pipeline: An Example Step 1: Update the Pipeline and Track the Change Using Git Step 2: Reproduce the Pipeline Starting from the Evaluation Stage Separate Storage Locations for Code and Pipeline Artifacts Visualization of ML Pipeline OML4R Troubleshooting Tips Error When Connecting to Oracle Database (as oml_user) Solution Error Due to Missing Packages When Building Models Solution Error When Creating or Dropping R Scripts for Embedded R Execution Solution Summary Index