دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری سوخت ویرایش: نویسندگان: Patrick Bangert سری: ISBN (شابک) : 0128207140, 9780128207147 ناشر: Gulf Professional Publishing سال نشر: 2021 تعداد صفحات: 274 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Machine Learning and Data Science in the Oil and Gas Industry: Best Practices, Tools, and Case Studies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین و علوم داده در صنعت نفت و گاز: بهترین روش ها ، ابزارها و مطالعات موردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یادگیری ماشین و علم داده در صنعت نفت و گاز توضیح میدهد که چگونه یادگیری ماشینی میتواند به طور خاص برای موارد استفاده از نفت و گاز تنظیم شود. مهندسان نفت یاد خواهند گرفت که چه زمانی از یادگیری ماشینی استفاده کنند، چگونه از قبل در عملیات نفت و گاز استفاده می شود و چگونه جریان داده را در حال حرکت به جلو مدیریت کنند. این کتاب در رویکرد خود، تمام جنبههای یک پروژه علم داده یا یادگیری ماشین، از جمله بخشهای مدیریتی آن را که اغلب علت شکست هستند، توضیح میدهد. چندین مطالعه موردی واقعی کتاب را با موضوعاتی مانند نگهداری پیشبینیکننده، سنجش نرم و پیشبینی کامل میکنند. این راهنما که به عنوان یک کتاب راهنما مشاهده میشود، یک متخصص را در سفر یک پروژه علم داده در صنعت نفت و گاز هدایت میکند تا مشکلات را دور بزند و ارزش تجاری را بیان کند.
Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value.
Dedication_2021_Machine-Learning-and-Data-Science-in-the-Oil-and-Gas-Industr Front-matter_2021_Machine-Learning-and-Data-Science-in-the-Oil-and-Gas-Indus Copyright_2021_Machine-Learning-and-Data-Science-in-the-Oil-and-Gas-Industry Contributors_2021_Machine-Learning-and-Data-Science-in-the-Oil-and-Gas-Indus Foreword_2021_Machine-Learning-and-Data-Science-in-the-Oil-and-Gas-Industry Chapter-1---Introduc_2021_Machine-Learning-and-Data-Science-in-the-Oil-and-G Chapter 1 - Introduction 1.1 - Who this book is for 1.2 - Preview of the content 1.3 - Oil and gas industry overview 1.4 - Brief history of oil exploration 1.5 Oil and gas as limited resources 1.6 - Challenges of oil and gas References Chapter-2---Data-Science--Statist_2021_Machine-Learning-and-Data-Science-in- Chapter 2 - Data Science, Statistics, and Time-Series 2.1 - Measurement, uncertainty, and record keeping 2.1.1 - Uncertainty 2.1.2 - Record keeping 2.2 - Correlation and timescales 2.3 - The idea of a model 2.4 - First principles models 2.5 - The straight line 2.6 - Representation and significance 2.7 - Outlier detection 2.8 - Residuals and statistical distributions 2.9 - Feature engineering 2.10 - Principal component analysis 2.11 - Practical advice References Chapter-3---Machine-Lea_2021_Machine-Learning-and-Data-Science-in-the-Oil-an Chapter 3 - Machine Learning 3.1 - Basic ideas of machine learning 3.2 - Bias-variance complexity trade-off 3.3 - Model types 3.3.1 - Deep neural network 3.3.2 - Recurrent neural network or long short-term memory network 3.3.3 - Support vector machines 3.3.4 - Random forest or decision trees 3.3.5 - Self-organizing maps (SOM) 3.3.6 - Bayesian network and ontology 3.4 - Training and assessing a model 3.5 - How good is my model? 3.6 - Role of domain knowledge 3.7 - Optimization using a model 3.8 - Practical advice References Chapter-4---Introduction-to-Machine-Le_2021_Machine-Learning-and-Data-Scienc Chapter 4 - Introduction to Machine Learning in the Oil and Gas Industry 4.1 - Forecasting 4.2 - Predictive maintenance 4.3 - Production 4.4 - Modeling physical relationships 4.5 - Optimization and advanced process control 4.6 - Other applications References Chapter-5---Data-Management-from-t_2021_Machine-Learning-and-Data-Science-in Chapter 5 - Data Management from the DCS to the Historian 5.1 - Introduction 5.1.1 - Convergence of OT and IT 5.1.2 - A maturity model for OT/IT convergence 5.1.3 - Digital Oilfield 2.0 headed to the edge 5.2 - Sensor data 5.2.1 - There are problems with data from sensors: data quality challenges 5.2.2 - Validation, estimation, and editing (VEE) 5.3 - Time series data 5.4 - How sensor data is transmitted by field networks 5.4.1 - From Plant to Field: Communications Protocols (HART, Fieldbus, OPC, OPC-UA and Wireless Hart) 5.4.2 - Wireless SCADA radio 5.4.3 - Which protocol is best? 5.5 - How control systems manage data 5.5.1 - Cloud-based SCADA and web-based SCADA 5.6 - Historians and information servers as a data source 5.6.1 - What can you record in a data historian? 5.7 - Data visualization of time series data—HMI (human machine interface) 5.7.1 - Asset performance management systems (APM) 5.7.1.1 - Process control and alarm management 5.7.2 - Key elements of data management for asset performance management 5.7.2.1 - What is an asset registry? 5.7.2.2 - What is the definition of data taxonomy? 5.7.2.3 - What is the definition of data ontology? 5.8 - Data management for equipment and facilities 5.8.1 - What is a document management system? 5.9 - Simulators, process modeling, and operating training systems 5.10 - How to get data out of the field/plant and to your analytics platform 5.10.1 - Data visualization 5.10.1.1 - From historians to a data infrastructure 5.10.2 - Data analytics 5.10.3 - Three historical stages of industrial analytics 5.10.3.1 - Where is data analytics headed? 5.11 - Conclusion: do you know if your data is correct? References Chapter-6---Getting-the-Most-Acr_2021_Machine-Learning-and-Data-Science-in-t Chapter 6 - Getting the Most Across the Value Chain 6.1 - Thinking outside the box 6.2 - Costing a project 6.3 - Valuing a project 6.3.1 - How to measure the benefit 6.3.2 - Measuring the benefit 6.4 - The business case 6.5 - Growing markets, optimizing networks 6.6 - Integrated strategy and alignment 6.7 - Case studies: capturing market opportunities 6.8 - Digital platform: partner, acquire, or build? 6.9 - What success looks like Chapter-7---Project-Management-for-_2021_Machine-Learning-and-Data-Science-i Chapter 7 - Project Management for a Machine Learning Project 7.1 - Classical project management in oil & gas-a (short) primer 7.2 - Agile-the mindset 7.3 - Scrum-the framework 7.3.1 - Roles of scrum 7.3.2 - Events 7.3.3 - Artifacts 7.3.4 - Values 7.3.5 - How it works 7.4 - Project execution-from pilot to product 7.4.1 - Pilot setup 7.4.2 - Product owner 7.4.3 - Development team 7.4.4 - Scrum master 7.4.5 - Stakeholders 7.5 - Management of change and culture 7.6 - Scaling-from pilot to product 7.6.1 - Take advantage of a platform 7.6.2 - Establish a team and involve the assets 7.6.3 - Keep developing 7.6.4 - Involve UX expertise References Further reading Chapter-8---The-Business-of-_2021_Machine-Learning-and-Data-Science-in-the-O Chapter 8 - The Business of AI Adoption 8.1 - Defining artificial intelligence 8.2 - AI impacts on oil and gas 8.2.1 - Upstream impacts 8.2.2 - Downstream impacts 8.2.3 - Production and midstream impacts 8.2.4 - New business models 8.3 - The adoption challenge 8.3.1 - The uncertainties of new technology 8.3.2 - AI in the field One: Correct predictable analysis Two: Correct unpredictable analysis Three: Incorrect predictable analysis Four: Incorrect unpredictable analysis 8.4 - The problem of trustf 8.4.1 - Work is evolving 8.4.2 - Driverless transportation 8.4.3 - Trust and the machine 8.4.4 - The human-smart machine trust gap 8.4.5 - Trusting a smart machine 8.4.6 - Trusting the smart machine developer 8.4.7 - Making it real 8.4.8 - Getting to trust 8.5 - Digital leaders lead 8.5.1 - Finding the digital leader 8.5.2 - Moving beyond trials and pilots 8.5.3 - The role of trials and pilots 8.5.4 - The economics of pilot projects 8.5.5 - Moving to enterprise deployment Customer tactics Technology supplier tactics 8.6 - Overcoming barriers to scaling up 8.6.1 - The scale mismatch 8.6.2 - Supplier consolidation 8.6.3 - The corporate accelerator 8.6.4 - The oil company investor 8.7 - Confronting front line change Greed Fear Pride 8.7.1 - The corporate parallels 8.7.2 - Early warning signs The digital narrative Manage the pace Execution challenges 8.8 - Doing digital change 8.8.1 - A typical change champion 8.8.2 - Organizational reaction to change Honor the past, define the future CEO as change leader Communicate Be purpose driven Think big, start small, be agile Build cyber security in Stay the course Chapter-9---Global-Practice-of-AI-and-_2021_Machine-Learning-and-Data-Scienc Chapter 9 - Global Practice of AI and Big Data in Oil and Gas Industry 9.1 - Introduction 9.2 - Integrate digital rock physics with AI to optimize oil recovery 9.2.1 - The upstream business 9.2.2 - Digital core technology 9.2.3 - Modeling wettability at the pore-scale 9.3 - The molecular level advance planning system for refining 9.3.1 - Prediction of crude oil mixing and molecular properties 9.3.2 - Scheduling optimization at the molecular level 9.3.3 - Collaborative optimization of the entire industry chain 9.4 - The application of big data in the oil refining process 9.4.1 - Principle and methodology 9.4.2 - A case study of CCR process unit 9.5 - Equipment management based on AI 9.5.1 - Equipment hazard monitoring and warning 9.5.2 - Equipment fault recognition and diagnosis 9.5.3 - Equipment health status, residual life prediction and other management References Chapter-10---Soft-Sensors-for_2021_Machine-Learning-and-Data-Science-in-the- Chapter 10 - Soft Sensors for NOx Emissions 10.1 - Introduction to soft sensing 10.2 - NOx and SOx emissions 10.3 - Combined heat and power (CHP) 10.4 - Soft sensing and machine learning 10.5 - Setting up a soft sensor 10.6 - Assessing the model 10.7 - Conclusion References Chapter-11---Detecting-Electric-Su_2021_Machine-Learning-and-Data-Science-in Chapter 11 - Detecting Electric Submersible Pump Failures 11.1 - Introduction 11.2 - ESP data analytics 11.3 - Principal Component Analysis 11.4 - PCA diagnostic model 11.5 - Case study: diagnosis of the ESP broken shaft 11.5.1 - Selection of the ESP broken shaft variables 11.5.2 - Score of principle components 11.5.3 - Pump broken shaft identification 11.6 - Conclusions References Further reading Chapter-12---Predictive-and-Diagnost_2021_Machine-Learning-and-Data-Science- Chapter 12 - Predictive and Diagnostic Maintenance for Rod Pumps 12.1 - Introduction 12.1.1 - Beam pumps 12.1.2 - Beam pump problems 12.1.3 - Problem statement 12.2 - Feature engineering 12.2.1 - Library-based methods 12.2.2 - Model-based methods 12.2.3 - Segment-based methods 12.2.4 - Other methods 12.2.5 - Selection of features 12.3 - Project method to validate our model 12.3.1 - Data collection 12.3.2 - Generation of training data 12.3.3 - Feature engineering 12.3.4 - Machine learning 12.3.5 - Summary of methodology 12.4 - Results 12.4.1 - Summary and review 12.4.2 - Conclusion References Chapter-13---Forecasting-Sluggin_2021_Machine-Learning-and-Data-Science-in-t Chapter 13 - Forecasting Slugging in Gas Lift Wells 13.1 - Introduction 13.2 - Methodology 13.3 - Focus projects 13.3.1 - Dashboarding landscape/architecture 13.3.2 - Slugging 13.4 - Data structure 13.5 - Outlook 13.6 - Conclusion Further reading Index_2021_Machine-Learning-and-Data-Science-in-the-Oil-and-Gas-Industry